上睑下垂
肝细胞癌
列线图
医学
肿瘤科
转录组
癌症研究
内科学
生物
基因
基因表达
炎症体
生物化学
炎症
作者
Yang Liu,Hanlin Li,Tianyu Zeng,Yang Wang,Hongqi Zhang,Ying Wan,Zheng Shi,Renzhi Cao,Hua Tang
摘要
Abstract Although some pyroptosis-related (PR) prognostic models for cancers have been reported, pyroptosis-based features have not been fully discovered at the single-cell level in hepatocellular carcinoma (HCC). In this study, by deeply integrating single-cell and bulk transcriptome data, we systematically investigated significance of the shared pyroptotic signature at both single-cell and bulk levels in HCC prognosis. Based on the pyroptotic signature, a robust PR risk system was constructed to quantify the prognostic risk of individual patient. To further verify capacity of the pyroptotic signature on predicting patients’ prognosis, an attention mechanism-based deep neural network classification model was constructed. The mechanisms of prognostic difference in the patients with distinct PR risk were dissected on tumor stemness, cancer pathways, transcriptional regulation, immune infiltration and cell communications. A nomogram model combining PR risk with clinicopathologic data was constructed to evaluate the prognosis of individual patients in clinic. The PR risk could also evaluate therapeutic response to neoadjuvant therapies in HCC patients. In conclusion, the constructed PR risk system enables a comprehensive assessment of tumor microenvironment characteristics, accurate prognosis prediction and rational therapeutic options in HCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI