Integrated bulk and single-cell transcriptomes reveal pyroptotic signature in prognosis and therapeutic options of hepatocellular carcinoma by combining deep learning

上睑下垂 肝细胞癌 列线图 医学 肿瘤科 转录组 癌症研究 内科学 生物 基因 基因表达 炎症体 生物化学 炎症
作者
Yang Liu,Hanlin Li,Tianyu Zeng,Yang Wang,Hongqi Zhang,Ying Wan,Zheng Shi,Renzhi Cao,Hua Tang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1) 被引量:4
标识
DOI:10.1093/bib/bbad487
摘要

Abstract Although some pyroptosis-related (PR) prognostic models for cancers have been reported, pyroptosis-based features have not been fully discovered at the single-cell level in hepatocellular carcinoma (HCC). In this study, by deeply integrating single-cell and bulk transcriptome data, we systematically investigated significance of the shared pyroptotic signature at both single-cell and bulk levels in HCC prognosis. Based on the pyroptotic signature, a robust PR risk system was constructed to quantify the prognostic risk of individual patient. To further verify capacity of the pyroptotic signature on predicting patients’ prognosis, an attention mechanism-based deep neural network classification model was constructed. The mechanisms of prognostic difference in the patients with distinct PR risk were dissected on tumor stemness, cancer pathways, transcriptional regulation, immune infiltration and cell communications. A nomogram model combining PR risk with clinicopathologic data was constructed to evaluate the prognosis of individual patients in clinic. The PR risk could also evaluate therapeutic response to neoadjuvant therapies in HCC patients. In conclusion, the constructed PR risk system enables a comprehensive assessment of tumor microenvironment characteristics, accurate prognosis prediction and rational therapeutic options in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael Zhang完成签到 ,获得积分10
刚刚
邓年念发布了新的文献求助10
1秒前
云那边的山发布了新的文献求助300
2秒前
英姑应助EMMA采纳,获得10
3秒前
浮游应助xxx采纳,获得10
4秒前
深情安青应助小王采纳,获得30
4秒前
AIKaikai发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
怕孤独的聪展完成签到,获得积分10
10秒前
11秒前
11秒前
李健的小迷弟应助Lisa田采纳,获得20
11秒前
11秒前
邓年念完成签到,获得积分10
14秒前
14秒前
Windsea完成签到,获得积分10
14秒前
李健应助苟文锋采纳,获得10
15秒前
何雨航发布了新的文献求助10
15秒前
16秒前
16秒前
Lucas应助lily采纳,获得10
17秒前
17秒前
lhr关闭了lhr文献求助
17秒前
18秒前
19秒前
20秒前
隐形曼青应助科研进化中采纳,获得10
20秒前
顶上之战发布了新的文献求助30
21秒前
千早爱音应助123采纳,获得10
23秒前
23秒前
chenmeimei2012完成签到 ,获得积分10
24秒前
24秒前
John发布了新的文献求助10
25秒前
26秒前
苟文锋发布了新的文献求助10
27秒前
28秒前
eating完成签到,获得积分10
29秒前
Windsea发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452