YOLO-HMC: An Improved Method for PCB Surface Defect Detection

印刷电路板 可靠性(半导体) 过程(计算) 特征(语言学) 计算机科学 特征提取 人工智能 块(置换群论) 模式识别(心理学) 计算机视觉 数学 功率(物理) 语言学 物理 哲学 几何学 量子力学 操作系统
作者
Minghao Yuan,Yongbing Zhou,Xiaoyu Ren,Hui Zhi,Jian Zhang,Haojie Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:5
标识
DOI:10.1109/tim.2024.3351241
摘要

The surface defects of printed circuit boards (PCB) generated during the manufacturing process have an adverse effect on product quality, which further directly affects the stability and reliability of equipment performance. However, there are still great challenges in accurately recognizing tiny defects on the surface of PCB under the complex background due to its compact layout. To address the problem, a novel YOLO-HMC network based on improved YOLOv5 framework is proposed in this paper to identify the tiny-size PCB defect more accurately and efficiently with fewer model parameters. Firstly, the backbone part adopts the HorNet for enhancing the feature extraction ability and deepening the information interaction. Secondly, an improved multiple convolutional block attention module (MCBAM) is designed to improve the ability of the model to highlight the defect location from a highly similar PCB substrate background. Thirdly, the content-aware reassembly of features (CARAFE) is used to replace the up-sampling layer for fully aggregating the contextual semantic information of PCB images in a large receptive field. Moreover, aiming at the difference between PCB defect detection and natural detection, the original model detection head is optimized to ensure that YOLOv5 can accurately detect PCB tiny defects. Extensive experiments on PCB defect public datasets have demonstrated a significant advantage compared with several state-of-the-art models, whose mean Average Precision (mAP) can reach 98.6%, verifying the accuracy and applicability of the proposed YOLO-HMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅的语梦完成签到 ,获得积分10
1秒前
小孟吖发布了新的文献求助10
1秒前
wlei完成签到,获得积分10
2秒前
土豆西红柿完成签到,获得积分10
2秒前
阳光水壶发布了新的文献求助10
2秒前
李爱国应助shawn采纳,获得10
3秒前
3秒前
3秒前
followZ完成签到,获得积分10
4秒前
6秒前
疯狂的宛发布了新的文献求助10
7秒前
哭泣的又蓝完成签到,获得积分10
7秒前
就月听雨完成签到,获得积分10
8秒前
臭宝大迷弟完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
樟寿完成签到,获得积分10
9秒前
ark861023发布了新的文献求助10
10秒前
烟花应助威武十八采纳,获得10
10秒前
10秒前
所所应助毛耳朵采纳,获得10
11秒前
阳光水壶完成签到,获得积分10
11秒前
李健的粉丝团团长应助wj采纳,获得10
11秒前
丘比特应助呆呆采纳,获得10
12秒前
念心发布了新的文献求助10
12秒前
sherryry发布了新的文献求助30
13秒前
科研通AI2S应助冷静青文采纳,获得10
13秒前
Owen应助xxx采纳,获得10
13秒前
充电宝应助神奇的光子采纳,获得10
14秒前
寻桃完成签到,获得积分10
14秒前
xq1213发布了新的文献求助10
15秒前
上官若男应助杰Sir采纳,获得10
15秒前
隐形曼青应助wangayting采纳,获得10
16秒前
yuan发布了新的文献求助200
16秒前
16秒前
WWXWWX发布了新的文献求助10
18秒前
18秒前
CodeCraft应助gdh采纳,获得10
18秒前
李健的小迷弟应助北林采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144133
求助须知:如何正确求助?哪些是违规求助? 2795764
关于积分的说明 7816509
捐赠科研通 2451813
什么是DOI,文献DOI怎么找? 1304705
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419