控制理论(社会学)
间歇控制
同步(交流)
控制器(灌溉)
非线性系统
模糊逻辑
人工神经网络
计算机科学
自适应控制
反应扩散系统
Lyapunov稳定性
控制(管理)
数学
拓扑(电路)
控制工程
人工智能
工程类
物理
农学
数学分析
组合数学
量子力学
生物
作者
Qiwei Liu,Huaicheng Yan,Hao Zhang,Lu Zeng,Chaoyang Chen
标识
DOI:10.1109/tnnls.2023.3344515
摘要
In this article, the global exponential synchronization problem is investigated for a class of delayed nonlinear memristive neural networks (MNNs) with reaction–diffusion items. First, using the Green formula, Lyapunov theory, and proposing a new fuzzy adaptive pinning control scheme, some novel algebraic criteria are obtained to ensure the exponential synchronization of the concerned networks. Furthermore, the corresponding control gains can be promptly adjusted based on the current states of partial nodes of the networks. Besides, a fuzzy adaptive aperiodically intermittent pinning control law is also designed to synchronize the fuzzy MNNs (FMNNs). The controller with intermittent mechanism can obtain appropriate rest time and save energy consumption. Finally, some numerical examples are provided to confirm the effectiveness of the results in this article.
科研通智能强力驱动
Strongly Powered by AbleSci AI