An empirical assessment of different word embedding and deep learning models for bug assignment

计算机科学 人工智能 深度学习 文字嵌入 文字2vec 水准点(测量) 自然语言处理 机器学习 词(群论) 嵌入 语言学 哲学 大地测量学 地理
作者
Rongcun Wang,Xingyu Ji,Senlei Xu,Yuan Tian,Shujuan Jiang,Rubing Huang
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:210: 111961-111961
标识
DOI:10.1016/j.jss.2024.111961
摘要

Bug assignment, or bug triage, focuses on identifying the appropriate developers to repair newly discovered bugs, thereby managing them more effectively. Several deep learning-based approaches have been proposed for automated bug assignment. These approaches view automated bug assignment as a text classification task - the textual description of a bug report is utilized as the input and the potential fixers are regarded as the output labels. Such approaches typically depend on the classification performance of natural language processing and machine learning techniques. Various word embedding and deep learning models have emerged continuously. The effectiveness of those approaches depends on the chosen deep learning model, used for classification, and the word embedding model, used for representing bug reports. However, prior research does not empirically evaluate the impacts of various word embedding and deep learning models for automated bug assignment. In this paper, we conduct an empirical study to analyze the performance variations among 35 deep learning-based automated bug assignment approaches. These approaches are based on five word embedding techniques, i.e., Word2Vec, GloVe, NextBug, ELMo, and BERT, and seven text classification models, i.e., TextCNN, LSTM, Bi-LSTM, LSTM with attention, Bi-LSTM with attention, MLP, and Naive Bayes. We evaluated these combinations across three benchmark datasets, namely Eclipse JDT, GCC, and Firefox, and their mergence i.e., a cross-project dataset. Our main observations are: (1) Bi-LSTM with attention and Bi-LSTM using ELMo are significantly superior to other deep learning models on bug assignment tasks in terms of top-k (k=1, 5, 10) accuracy and MRR; (2) Both the summary and description of bug reports are useful for bug assignment, but the description is more useful than the summary; (3) The training corpus for word embedding models has a significant impact on the performance of deep learning-based bug assignment methods. Our results show the importance of tuning different components (e.g. word embedding model, classification model, and textual input) in deep learning-based automated bug assignment methods and provide important insights for practitioners and researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
雪妮完成签到 ,获得积分10
2秒前
哈哈完成签到 ,获得积分10
8秒前
满眼星辰完成签到 ,获得积分10
12秒前
LL完成签到,获得积分10
15秒前
komisan完成签到 ,获得积分10
18秒前
shy完成签到,获得积分10
24秒前
Kevin完成签到,获得积分10
24秒前
善良起眸完成签到 ,获得积分10
25秒前
七月星河完成签到 ,获得积分10
30秒前
眼睛大迎波完成签到,获得积分10
30秒前
夏秋完成签到 ,获得积分10
31秒前
奋斗人雄完成签到,获得积分10
34秒前
刻苦的猕猴桃完成签到,获得积分10
35秒前
午后狂睡完成签到 ,获得积分10
36秒前
王灿灿应助Zhiyang Lu采纳,获得50
39秒前
大个应助刻苦的猕猴桃采纳,获得10
39秒前
huhu完成签到 ,获得积分10
40秒前
44秒前
领导范儿应助科研通管家采纳,获得10
44秒前
小马甲应助科研通管家采纳,获得10
44秒前
Fred Guan应助精灵少女采纳,获得10
46秒前
eternal_dreams完成签到 ,获得积分10
46秒前
小哈完成签到 ,获得积分10
49秒前
likw23完成签到 ,获得积分10
51秒前
53秒前
义气凡阳发布了新的文献求助10
59秒前
精灵少女完成签到,获得积分10
59秒前
畅快城完成签到,获得积分10
1分钟前
Jessie完成签到 ,获得积分10
1分钟前
安详向薇完成签到,获得积分10
1分钟前
粗心的惜梦完成签到 ,获得积分10
1分钟前
yk完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
兔子不爱吃胡萝卜完成签到,获得积分10
1分钟前
dl完成签到,获得积分10
1分钟前
忧郁的寻冬完成签到,获得积分10
1分钟前
妖哥完成签到,获得积分10
1分钟前
叮叮当当完成签到,获得积分10
1分钟前
dl发布了新的文献求助10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139665
求助须知:如何正确求助?哪些是违规求助? 2790602
关于积分的说明 7795670
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176