清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An empirical assessment of different word embedding and deep learning models for bug assignment

计算机科学 人工智能 深度学习 文字嵌入 文字2vec 水准点(测量) 自然语言处理 机器学习 词(群论) 嵌入 大地测量学 语言学 哲学 地理
作者
Rongcun Wang,Xingyu Ji,Senlei Xu,Yuan Tian,Shujuan Jiang,Rubing Huang
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:210: 111961-111961
标识
DOI:10.1016/j.jss.2024.111961
摘要

Bug assignment, or bug triage, focuses on identifying the appropriate developers to repair newly discovered bugs, thereby managing them more effectively. Several deep learning-based approaches have been proposed for automated bug assignment. These approaches view automated bug assignment as a text classification task - the textual description of a bug report is utilized as the input and the potential fixers are regarded as the output labels. Such approaches typically depend on the classification performance of natural language processing and machine learning techniques. Various word embedding and deep learning models have emerged continuously. The effectiveness of those approaches depends on the chosen deep learning model, used for classification, and the word embedding model, used for representing bug reports. However, prior research does not empirically evaluate the impacts of various word embedding and deep learning models for automated bug assignment. In this paper, we conduct an empirical study to analyze the performance variations among 35 deep learning-based automated bug assignment approaches. These approaches are based on five word embedding techniques, i.e., Word2Vec, GloVe, NextBug, ELMo, and BERT, and seven text classification models, i.e., TextCNN, LSTM, Bi-LSTM, LSTM with attention, Bi-LSTM with attention, MLP, and Naive Bayes. We evaluated these combinations across three benchmark datasets, namely Eclipse JDT, GCC, and Firefox, and their mergence i.e., a cross-project dataset. Our main observations are: (1) Bi-LSTM with attention and Bi-LSTM using ELMo are significantly superior to other deep learning models on bug assignment tasks in terms of top-k (k=1, 5, 10) accuracy and MRR; (2) Both the summary and description of bug reports are useful for bug assignment, but the description is more useful than the summary; (3) The training corpus for word embedding models has a significant impact on the performance of deep learning-based bug assignment methods. Our results show the importance of tuning different components (e.g. word embedding model, classification model, and textual input) in deep learning-based automated bug assignment methods and provide important insights for practitioners and researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward完成签到,获得积分10
3秒前
ramsey33完成签到 ,获得积分10
4秒前
HaCat完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
19秒前
cugwzr完成签到,获得积分10
21秒前
znchick完成签到,获得积分10
31秒前
33秒前
38秒前
英俊的铭应助Rottyyii采纳,获得10
38秒前
41秒前
53秒前
53秒前
54秒前
54秒前
55秒前
56秒前
56秒前
57秒前
58秒前
58秒前
58秒前
59秒前
59秒前
文天发布了新的文献求助30
59秒前
文天发布了新的文献求助10
59秒前
文天发布了新的文献求助10
59秒前
59秒前
文天发布了新的文献求助10
59秒前
文天发布了新的文献求助10
59秒前
59秒前
文天发布了新的文献求助10
1分钟前
文天发布了新的文献求助10
1分钟前
文天发布了新的文献求助30
1分钟前
文天发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
文天发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706560
求助须知:如何正确求助?哪些是违规求助? 5175113
关于积分的说明 15247053
捐赠科研通 4860012
什么是DOI,文献DOI怎么找? 2608322
邀请新用户注册赠送积分活动 1559244
关于科研通互助平台的介绍 1517014