An empirical assessment of different word embedding and deep learning models for bug assignment

计算机科学 人工智能 深度学习 文字嵌入 文字2vec 水准点(测量) 自然语言处理 机器学习 词(群论) 嵌入 语言学 哲学 大地测量学 地理
作者
Rongcun Wang,Xingyu Ji,Senlei Xu,Yuan Tian,Shujuan Jiang,Rubing Huang
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:210: 111961-111961
标识
DOI:10.1016/j.jss.2024.111961
摘要

Bug assignment, or bug triage, focuses on identifying the appropriate developers to repair newly discovered bugs, thereby managing them more effectively. Several deep learning-based approaches have been proposed for automated bug assignment. These approaches view automated bug assignment as a text classification task - the textual description of a bug report is utilized as the input and the potential fixers are regarded as the output labels. Such approaches typically depend on the classification performance of natural language processing and machine learning techniques. Various word embedding and deep learning models have emerged continuously. The effectiveness of those approaches depends on the chosen deep learning model, used for classification, and the word embedding model, used for representing bug reports. However, prior research does not empirically evaluate the impacts of various word embedding and deep learning models for automated bug assignment. In this paper, we conduct an empirical study to analyze the performance variations among 35 deep learning-based automated bug assignment approaches. These approaches are based on five word embedding techniques, i.e., Word2Vec, GloVe, NextBug, ELMo, and BERT, and seven text classification models, i.e., TextCNN, LSTM, Bi-LSTM, LSTM with attention, Bi-LSTM with attention, MLP, and Naive Bayes. We evaluated these combinations across three benchmark datasets, namely Eclipse JDT, GCC, and Firefox, and their mergence i.e., a cross-project dataset. Our main observations are: (1) Bi-LSTM with attention and Bi-LSTM using ELMo are significantly superior to other deep learning models on bug assignment tasks in terms of top-k (k=1, 5, 10) accuracy and MRR; (2) Both the summary and description of bug reports are useful for bug assignment, but the description is more useful than the summary; (3) The training corpus for word embedding models has a significant impact on the performance of deep learning-based bug assignment methods. Our results show the importance of tuning different components (e.g. word embedding model, classification model, and textual input) in deep learning-based automated bug assignment methods and provide important insights for practitioners and researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangfan发布了新的文献求助10
1秒前
xzy998应助巧克力手印采纳,获得10
2秒前
晓先森完成签到,获得积分10
3秒前
秘小先儿应助bju采纳,获得10
3秒前
3秒前
呆萌井完成签到,获得积分20
4秒前
4秒前
诸葛嵩完成签到,获得积分10
5秒前
DGL来哥完成签到,获得积分10
5秒前
ddsyg126完成签到,获得积分10
5秒前
kk完成签到 ,获得积分10
6秒前
诺奇完成签到,获得积分10
7秒前
jun完成签到,获得积分10
8秒前
Chamsel完成签到,获得积分10
8秒前
小小完成签到,获得积分10
8秒前
9秒前
超帅鸣凤完成签到,获得积分10
9秒前
丰富的小鸽子完成签到 ,获得积分10
10秒前
10秒前
丘比特应助落后妙梦采纳,获得10
11秒前
尼可刹米洛贝林完成签到,获得积分10
11秒前
孟一完成签到,获得积分10
11秒前
冷傲迎梦发布了新的文献求助10
12秒前
哈哈完成签到 ,获得积分10
12秒前
研友_Lpawrn完成签到,获得积分10
12秒前
纯情苦瓜发布了新的文献求助10
13秒前
黎明完成签到,获得积分10
13秒前
yurihuang完成签到,获得积分10
13秒前
满意白卉完成签到 ,获得积分10
14秒前
vera完成签到 ,获得积分10
14秒前
小杨完成签到,获得积分10
15秒前
鹿若风完成签到,获得积分10
15秒前
落后妙梦完成签到,获得积分10
15秒前
迅速凝竹完成签到 ,获得积分10
15秒前
15秒前
舒庆春完成签到,获得积分10
16秒前
whatever完成签到,获得积分0
17秒前
18秒前
12321完成签到,获得积分10
18秒前
朴素鑫完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259