Predicting drug synergy using a network propagation inspired machine learning framework

可解释性 药品 相互作用体 机器学习 机制(生物学) 药物重新定位 人工智能 计算生物学 生物网络 计算机科学 可扩展性 生物 生物信息学 药理学 基因 生物化学 哲学 认识论 数据库
作者
Qing Jin,Xianze Zhang,D Huo,Hongbo Xie,Denan Zhang,Lei Liu,Yashuang Zhao,Xiujie Chen
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad056
摘要

Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐曼凝完成签到 ,获得积分10
2秒前
如意竺完成签到,获得积分10
2秒前
fzd完成签到,获得积分10
4秒前
7秒前
livra1058完成签到,获得积分10
8秒前
HAO完成签到,获得积分10
10秒前
震动的沉鱼完成签到 ,获得积分10
11秒前
糕糕发布了新的文献求助40
12秒前
dyk完成签到,获得积分10
12秒前
14秒前
carryxu完成签到,获得积分10
14秒前
卡卡罗特应助谦让小蚂蚁采纳,获得10
14秒前
大个应助缓慢醉卉采纳,获得10
15秒前
lzhgoashore完成签到,获得积分10
15秒前
15秒前
helpme完成签到,获得积分10
15秒前
DLY完成签到,获得积分10
16秒前
17秒前
17秒前
达笙完成签到 ,获得积分10
18秒前
研友_VZG7GZ应助炒鸡小将采纳,获得10
20秒前
闪闪山柳完成签到 ,获得积分10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
zzz发布了新的文献求助10
21秒前
wumiao_1应助科研通管家采纳,获得10
21秒前
wumiao_1应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
22秒前
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029