Predicting drug synergy using a network propagation inspired machine learning framework

可解释性 药品 相互作用体 机器学习 机制(生物学) 药物重新定位 人工智能 计算生物学 生物网络 计算机科学 可扩展性 生物 生物信息学 药理学 基因 生物化学 哲学 认识论 数据库
作者
Qing Jin,Xianze Zhang,D Huo,Hongbo Xie,Denan Zhang,Lei Liu,Yashuang Zhao,Xiujie Chen
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad056
摘要

Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
物理大诗发布了新的文献求助10
1秒前
2秒前
危机的桐发布了新的文献求助10
2秒前
baobao发布了新的文献求助10
2秒前
内向鬼神完成签到 ,获得积分10
2秒前
Sylvia完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
艾达乳酪块完成签到,获得积分10
6秒前
6秒前
zjm发布了新的文献求助10
8秒前
zzzzz发布了新的文献求助10
10秒前
7890733发布了新的文献求助10
10秒前
11秒前
彭于晏应助Wdj821722采纳,获得10
12秒前
共享精神应助韦鑫龙采纳,获得10
14秒前
xiaohei发布了新的文献求助10
15秒前
16秒前
agony完成签到 ,获得积分10
16秒前
16秒前
科研通AI2S应助陈修锋采纳,获得10
17秒前
17秒前
18秒前
噗噗完成签到 ,获得积分10
20秒前
李健应助zhangyx采纳,获得10
20秒前
漂亮的孤丹完成签到 ,获得积分10
22秒前
柠檬发布了新的文献求助10
23秒前
晓晓完成签到,获得积分20
23秒前
瘦瘦烤鸡完成签到,获得积分10
23秒前
tylerconan完成签到 ,获得积分10
23秒前
慕青应助Leeny采纳,获得10
27秒前
英俊的铭应助晓晓采纳,获得30
28秒前
28秒前
29秒前
深情安青应助瘦瘦烤鸡采纳,获得10
29秒前
29秒前
33秒前
33秒前
陌上花开完成签到 ,获得积分0
33秒前
香蕉觅云应助人123456采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425920
求助须知:如何正确求助?哪些是违规求助? 4539604
关于积分的说明 14169598
捐赠科研通 4457400
什么是DOI,文献DOI怎么找? 2444514
邀请新用户注册赠送积分活动 1435459
关于科研通互助平台的介绍 1412898