Predicting drug synergy using a network propagation inspired machine learning framework

可解释性 药品 相互作用体 机器学习 机制(生物学) 药物重新定位 人工智能 计算生物学 生物网络 计算机科学 可扩展性 生物 生物信息学 药理学 基因 生物化学 哲学 认识论 数据库
作者
Qing Jin,Xianze Zhang,D Huo,Hongbo Xie,Denan Zhang,Lei Liu,Yashuang Zhao,Xiujie Chen
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad056
摘要

Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气惜霜发布了新的文献求助10
刚刚
刚刚
kkkklo发布了新的文献求助30
2秒前
传奇3应助润润轩轩采纳,获得10
2秒前
2秒前
4秒前
和谐乌龟发布了新的文献求助10
4秒前
zZ完成签到,获得积分10
4秒前
科研小白完成签到,获得积分10
4秒前
LYY发布了新的文献求助10
5秒前
wangfu完成签到,获得积分10
5秒前
ding应助Dddd采纳,获得10
6秒前
yin发布了新的文献求助10
6秒前
大模型应助张张采纳,获得10
6秒前
Akim应助吾问无为谓采纳,获得10
7秒前
7秒前
神勇的冰姬完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
tony完成签到,获得积分10
10秒前
Uynaux发布了新的文献求助30
10秒前
SONG完成签到,获得积分10
10秒前
SYLH应助干秋白采纳,获得10
11秒前
11秒前
风雨1210发布了新的文献求助10
12秒前
文艺书雪完成签到 ,获得积分10
12秒前
独行侠完成签到,获得积分10
12秒前
13秒前
我测你码发布了新的文献求助10
13秒前
又要起名字完成签到,获得积分10
13秒前
13秒前
13秒前
damian完成签到,获得积分10
14秒前
LiShin发布了新的文献求助10
14秒前
渝州人应助凤凰山采纳,获得10
15秒前
sweetbearm应助凤凰山采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794