已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting drug synergy using a network propagation inspired machine learning framework

可解释性 药品 相互作用体 机器学习 机制(生物学) 药物重新定位 人工智能 计算生物学 生物网络 计算机科学 可扩展性 生物 生物信息学 药理学 基因 生物化学 哲学 认识论 数据库
作者
Qing Jin,Xianze Zhang,D Huo,Hongbo Xie,Denan Zhang,Lei Liu,Yashuang Zhao,Xiujie Chen
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad056
摘要

Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇涯完成签到 ,获得积分10
2秒前
4秒前
feifei关注了科研通微信公众号
5秒前
ZhJF完成签到 ,获得积分10
5秒前
跳跃楼房完成签到 ,获得积分10
7秒前
小孩加油完成签到,获得积分10
7秒前
无限毛豆关注了科研通微信公众号
8秒前
xiuxiuzhang完成签到 ,获得积分10
8秒前
A宇发布了新的文献求助10
9秒前
莓烦恼完成签到 ,获得积分10
10秒前
xylor完成签到 ,获得积分10
10秒前
丘比特应助朴素的松鼠采纳,获得10
11秒前
韩十四完成签到 ,获得积分10
11秒前
racill完成签到 ,获得积分10
16秒前
ZJ完成签到,获得积分10
18秒前
20秒前
星叶完成签到 ,获得积分10
21秒前
22秒前
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
pgjwl应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
英姑应助Flash采纳,获得10
23秒前
23秒前
Yin完成签到 ,获得积分10
25秒前
善良的西瓜完成签到 ,获得积分10
32秒前
Flash完成签到,获得积分10
35秒前
成就的笑南完成签到 ,获得积分10
35秒前
36秒前
Yu完成签到,获得积分10
41秒前
42秒前
田様应助苏小喵采纳,获得10
42秒前
LYJ发布了新的文献求助10
42秒前
薯条完成签到 ,获得积分10
43秒前
Majarichy发布了新的文献求助10
48秒前
LYJ完成签到,获得积分10
48秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125899
求助须知:如何正确求助?哪些是违规求助? 2776224
关于积分的说明 7729457
捐赠科研通 2431591
什么是DOI,文献DOI怎么找? 1292142
科研通“疑难数据库(出版商)”最低求助积分说明 622497
版权声明 600392