A cylinder block dynamic characteristics-based data augmentation method for wear state identification under data imbalance condition

卷积神经网络 块(置换群论) 短时傅里叶变换 时域 计算机科学 频域 鉴定(生物学) 动态数据 过程(计算) 算法 傅里叶变换 工程类 人工智能 数学 计算机视觉 傅里叶分析 数学分析 植物 几何学 生物 程序设计语言 操作系统
作者
Junhui Zhang,S. B. Liu,Weidi Huang,Fei Lyu,Haogong Xu,Ruqiang Yan,Bing Xu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:208: 111036-111036
标识
DOI:10.1016/j.ymssp.2023.111036
摘要

The deterioration of the wear state in the key friction pairs will degenerate the performance of the axial piston pump. The wear rates differ under different wear states in practical applications. Therefore, the amount of monitoring data is significantly different under different wear states, which causes data imbalance problem. In addition, the distribution characteristics of the external signals are often drowned by environmental noise. To address these issues, a novel cylinder block dynamic characteristics-based data augmentation method is presented for wear state identification. Firstly, a cylinder block’s dynamic characteristics state perception method is proposed to obtain the time domain data. Then, to reduce the computing costs, the raw data is fused into multi-channel time–frequency domain data by the short-time Fourier transform (STFT) based method. Finally, the minority time–frequency data is augmented by the designed deep convolutional generative adversarial network (DCGAN). To verify the wear state identification performance of the proposed method, a convolutional neural network (CNN) is designed. Wear states injection experiments are adopted to verify the feasibility of the proposed method. The advantage of the developed method is that it obtains prominent data distribution characteristics from internal signals to enhance the performance of the data augmentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
huangllza发布了新的文献求助10
1秒前
1秒前
1秒前
Ning完成签到,获得积分10
1秒前
太阳下山完成签到 ,获得积分10
1秒前
郭娅楠发布了新的文献求助10
2秒前
852应助gyjk采纳,获得10
2秒前
怨念深重发布了新的文献求助10
3秒前
4秒前
研友_ZGR70n完成签到 ,获得积分10
5秒前
13gly发布了新的文献求助10
5秒前
5秒前
初昀杭完成签到 ,获得积分10
5秒前
6秒前
6秒前
冷语发布了新的文献求助10
6秒前
希望天下0贩的0应助577采纳,获得30
6秒前
7秒前
8秒前
Benny发布了新的文献求助30
8秒前
zhou完成签到,获得积分10
8秒前
9秒前
大个应助li采纳,获得10
9秒前
10秒前
huangllza完成签到,获得积分10
10秒前
汉堡包应助太阳下山采纳,获得30
10秒前
zjy发布了新的文献求助10
10秒前
uss完成签到,获得积分10
12秒前
星辰大海应助夕照古风采纳,获得10
12秒前
13秒前
scccc发布了新的文献求助10
13秒前
111发布了新的文献求助10
13秒前
zhou发布了新的文献求助10
14秒前
李爱国应助zzzlk采纳,获得10
15秒前
15秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751