PotentialMind: Graph Convolutional Machine Learning Potential for Sb–Te Binary Compounds of Multiple Stoichiometries

分子动力学 二进制数 计算机科学 化学计量学 无定形固体 图形 材料科学 人工智能 算法 化学 数学 理论计算机科学 计算化学 物理化学 结晶学 算术
作者
Guanjie Wang,Yuqi Sun,Jian Zhou,Zhimei Sun
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (51): 24724-24733 被引量:8
标识
DOI:10.1021/acs.jpcc.3c07110
摘要

Machine learning potential (MLP) has emerged as a powerful tool in materials research and design. However, most MLP methods rely only on a single descriptor generated by mathematical functions instead of mapping the three-dimensional space of the materials structure, and thus this type of potential is typically limited to specific compositions. In this research, we present graph convolutional machine learning potential (GCMLP) software, termed PotentialMind, which can transform three-dimensional atomic structures into vectors comprising nodes, edges, and weights based on multiple descriptors. Using Sb–Te phase change materials as examples, a model named GCMLP-ST suitable for 12 stoichiometries of Sb–Te compounds has been constructed, whose root-mean-square errors for energy and forces are, respectively, 4.51 and 73.13 meV/Å for training data sets and are, respectively, 4.97 and 76.25 meV/Å for unfamiliar testing data sets. Moreover, for the energy-volume curves and radius distribution function by molecular dynamics, the GCMLP-ST model with 10,000 atoms exhibits good agreement with the ab initio molecular dynamics (AIMD) results across crystalline, liquid, and amorphous phases for the six representative Sb–Te material systems, which also exhibit 50 times the computational efficiency of AIMD. With this framework, the architecture of the machine learning model can be customized by deep and transfer learning, extending to other material systems. In addition, benefiting from the high efficiency of PotentialMind molecular dynamics (PMMD), it can be used for real devices, spanning tens of nanoseconds and comprising millions of atoms under different programming conditions that are impossible with AIMD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
希勤发布了新的文献求助10
3秒前
zhinian28完成签到 ,获得积分10
4秒前
焚风发布了新的文献求助10
6秒前
6秒前
阿飞完成签到,获得积分10
7秒前
嘀嘀哒哒发布了新的文献求助10
7秒前
无趣养乐多完成签到 ,获得积分10
7秒前
快乐小恬完成签到 ,获得积分10
8秒前
JamesPei应助冷酷的听兰采纳,获得10
8秒前
HEIKU应助dingdingkche采纳,获得10
8秒前
10秒前
希勤完成签到,获得积分10
11秒前
小张同学完成签到,获得积分10
11秒前
共享精神应助嘀嘀哒哒采纳,获得10
12秒前
12秒前
12秒前
13秒前
zyyin发布了新的文献求助10
14秒前
12341完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
墨秘一完成签到,获得积分10
17秒前
sutharsons应助毛豆爸爸采纳,获得200
19秒前
alltoowell完成签到,获得积分0
19秒前
追寻清完成签到,获得积分10
20秒前
sadascaqwqw完成签到 ,获得积分10
20秒前
老实外绣发布了新的文献求助10
20秒前
基础题完成签到,获得积分10
21秒前
乃惜完成签到,获得积分10
22秒前
学术狗完成签到 ,获得积分10
22秒前
23秒前
小白狗完成签到,获得积分10
24秒前
wenjian发布了新的文献求助10
24秒前
白鸽应助Lemon采纳,获得30
25秒前
发发扶完成签到,获得积分10
28秒前
30秒前
QYW发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023