PotentialMind: Graph Convolutional Machine Learning Potential for Sb–Te Binary Compounds of Multiple Stoichiometries

分子动力学 二进制数 计算机科学 化学计量学 无定形固体 图形 材料科学 人工智能 算法 化学 数学 理论计算机科学 计算化学 物理化学 结晶学 算术
作者
Guanjie Wang,Yuqi Sun,Jian Zhou,Zhimei Sun
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (51): 24724-24733 被引量:10
标识
DOI:10.1021/acs.jpcc.3c07110
摘要

Machine learning potential (MLP) has emerged as a powerful tool in materials research and design. However, most MLP methods rely only on a single descriptor generated by mathematical functions instead of mapping the three-dimensional space of the materials structure, and thus this type of potential is typically limited to specific compositions. In this research, we present graph convolutional machine learning potential (GCMLP) software, termed PotentialMind, which can transform three-dimensional atomic structures into vectors comprising nodes, edges, and weights based on multiple descriptors. Using Sb–Te phase change materials as examples, a model named GCMLP-ST suitable for 12 stoichiometries of Sb–Te compounds has been constructed, whose root-mean-square errors for energy and forces are, respectively, 4.51 and 73.13 meV/Å for training data sets and are, respectively, 4.97 and 76.25 meV/Å for unfamiliar testing data sets. Moreover, for the energy-volume curves and radius distribution function by molecular dynamics, the GCMLP-ST model with 10,000 atoms exhibits good agreement with the ab initio molecular dynamics (AIMD) results across crystalline, liquid, and amorphous phases for the six representative Sb–Te material systems, which also exhibit 50 times the computational efficiency of AIMD. With this framework, the architecture of the machine learning model can be customized by deep and transfer learning, extending to other material systems. In addition, benefiting from the high efficiency of PotentialMind molecular dynamics (PMMD), it can be used for real devices, spanning tens of nanoseconds and comprising millions of atoms under different programming conditions that are impossible with AIMD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongzihao完成签到,获得积分20
1秒前
小蘑菇应助MaYue采纳,获得10
1秒前
1秒前
孙福禄应助机智的然然采纳,获得10
1秒前
GooJohn发布了新的文献求助10
2秒前
NexusExplorer应助杜兰特工队采纳,获得10
3秒前
3秒前
3秒前
4秒前
FashionBoy应助鲤跃采纳,获得10
5秒前
阳光c完成签到 ,获得积分10
5秒前
威武的手链完成签到,获得积分20
6秒前
sxr完成签到,获得积分10
6秒前
zhongzihao发布了新的文献求助10
7秒前
7秒前
在水一方应助闪闪采纳,获得10
7秒前
Jay发布了新的文献求助10
8秒前
灰灰子发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
小丑鱼儿发布了新的文献求助10
11秒前
XYN1发布了新的文献求助10
11秒前
14秒前
14秒前
LiuLiu完成签到,获得积分10
15秒前
樱桃小热巴完成签到 ,获得积分10
15秒前
16秒前
16秒前
不低头完成签到,获得积分10
16秒前
大鱼完成签到,获得积分10
17秒前
17秒前
XYN1完成签到,获得积分10
17秒前
MaYue发布了新的文献求助10
18秒前
18秒前
18秒前
闪闪发布了新的文献求助10
19秒前
尊敬依珊发布了新的文献求助10
20秒前
强强完成签到,获得积分10
21秒前
阿童木发布了新的文献求助10
23秒前
迷你的冰旋完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035