PotentialMind: Graph Convolutional Machine Learning Potential for Sb–Te Binary Compounds of Multiple Stoichiometries

分子动力学 二进制数 计算机科学 化学计量学 无定形固体 图形 材料科学 人工智能 算法 化学 数学 理论计算机科学 计算化学 物理化学 结晶学 算术
作者
Guanjie Wang,Yuqi Sun,Jian Zhou,Zhimei Sun
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (51): 24724-24733 被引量:10
标识
DOI:10.1021/acs.jpcc.3c07110
摘要

Machine learning potential (MLP) has emerged as a powerful tool in materials research and design. However, most MLP methods rely only on a single descriptor generated by mathematical functions instead of mapping the three-dimensional space of the materials structure, and thus this type of potential is typically limited to specific compositions. In this research, we present graph convolutional machine learning potential (GCMLP) software, termed PotentialMind, which can transform three-dimensional atomic structures into vectors comprising nodes, edges, and weights based on multiple descriptors. Using Sb–Te phase change materials as examples, a model named GCMLP-ST suitable for 12 stoichiometries of Sb–Te compounds has been constructed, whose root-mean-square errors for energy and forces are, respectively, 4.51 and 73.13 meV/Å for training data sets and are, respectively, 4.97 and 76.25 meV/Å for unfamiliar testing data sets. Moreover, for the energy-volume curves and radius distribution function by molecular dynamics, the GCMLP-ST model with 10,000 atoms exhibits good agreement with the ab initio molecular dynamics (AIMD) results across crystalline, liquid, and amorphous phases for the six representative Sb–Te material systems, which also exhibit 50 times the computational efficiency of AIMD. With this framework, the architecture of the machine learning model can be customized by deep and transfer learning, extending to other material systems. In addition, benefiting from the high efficiency of PotentialMind molecular dynamics (PMMD), it can be used for real devices, spanning tens of nanoseconds and comprising millions of atoms under different programming conditions that are impossible with AIMD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓓蓓0303发布了新的文献求助10
刚刚
北还北完成签到,获得积分10
刚刚
1秒前
fenger111完成签到,获得积分20
1秒前
高兴123发布了新的文献求助10
1秒前
1秒前
1秒前
PMME完成签到,获得积分10
2秒前
Ava应助jiaojiao采纳,获得10
3秒前
jonsan完成签到,获得积分10
3秒前
一二一完成签到,获得积分10
3秒前
LGS发布了新的文献求助10
3秒前
4秒前
超级亿先发布了新的文献求助10
4秒前
清秀的碧彤完成签到,获得积分10
4秒前
阳光代容完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
7秒前
LULU完成签到,获得积分10
7秒前
一二一发布了新的文献求助10
7秒前
8秒前
Sichen孟完成签到 ,获得积分10
8秒前
香蕉觅云应助蓓蓓0303采纳,获得10
9秒前
阿萨大大完成签到,获得积分10
9秒前
高大厉发布了新的文献求助30
9秒前
9秒前
致行完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
彭于晏应助xyy采纳,获得10
10秒前
hjc发布了新的文献求助10
10秒前
FashionBoy应助行云采纳,获得10
10秒前
贺兰发布了新的文献求助10
10秒前
贝奥兰迪完成签到,获得积分10
10秒前
希望天下0贩的0应助LGS采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489