An information fusion based approach to context-based fine-tuning of GPT models

计算机科学 对话框 变压器 人工智能 机器学习 背景(考古学) 聊天机器人 生成语法 上下文模型 集合(抽象数据类型) 训练集 自然语言处理 古生物学 物理 量子力学 电压 对象(语法) 万维网 生物 程序设计语言
作者
Toan Nguyen Mau,Anh-Cuong Le,Duc-Hong Pham,Van‐Nam Huynh
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102202-102202 被引量:10
标识
DOI:10.1016/j.inffus.2023.102202
摘要

In the new era of Artificial Intelligence (AI), Generative Pre-Trained Transformer (GPT) has emerged as a central technique for generating human-like texts. Over recent years, there has been a growing trend towards using GPT for building chatbot systems. However, pre-trained GPT models lack context awareness which can result in awkward dialogue in specific contexts. In this research, we propose a new information fusion based approach to fine tuning GPT models based on contextual data and two scenarios of evidence combination by means of Dempster–Shafer theory of evidence. To this end, we first design a Transformers-based dialog classification model to be trained with the contextual data, which is then used jointly with additional pre-trained models as sources of evidence for judging the output of a GPT model as a context-appropriate response. Two scenarios for modeling and combining evidence provided by the context-based dialog classification model and pre-trained models are also proposed. We conduct a set of experiments on several datasets associated with specific contexts to demonstrate the effectiveness of the proposed approach. The empirical results show that it can improve the contextuality of general GPT-2 and GPT-3.5 models in most cases of the testing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助一一采纳,获得10
2秒前
炙热的雪糕完成签到,获得积分10
2秒前
3秒前
心心0521发布了新的文献求助10
5秒前
pluto应助刘济源采纳,获得10
5秒前
FIN应助15采纳,获得10
5秒前
内向士萧发布了新的文献求助10
6秒前
abcdulla777完成签到,获得积分20
6秒前
7秒前
SYLH应助元狩采纳,获得10
8秒前
DUANYALI完成签到,获得积分10
8秒前
11秒前
马玲完成签到,获得积分10
11秒前
11秒前
12秒前
iwwwwwn完成签到,获得积分20
12秒前
123发布了新的文献求助10
12秒前
15完成签到,获得积分10
14秒前
啊露发布了新的文献求助10
15秒前
可乐发布了新的文献求助10
16秒前
16秒前
科研通AI5应助iwwwwwn采纳,获得10
18秒前
19秒前
19秒前
酷波er应助htWu采纳,获得10
21秒前
虚拟的惜筠发布了新的文献求助150
23秒前
烟花应助LONG采纳,获得10
23秒前
粗心的易云完成签到 ,获得积分10
23秒前
23秒前
传奇3应助123采纳,获得30
24秒前
Yuying发布了新的文献求助10
25秒前
也曦完成签到 ,获得积分20
27秒前
27秒前
Saman发布了新的文献求助10
28秒前
30秒前
大个应助wuxunxun2015采纳,获得10
31秒前
32秒前
xdy完成签到 ,获得积分10
33秒前
张楠完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783