亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Safety Equipment Wearing Detection Algorithm for Electric Power Workers Based on RepGFPN-YOLOv5

计算机科学 棱锥(几何) 特征(语言学) 算法 编码(集合论) 功能(生物学) 功率(物理) 集合(抽象数据类型) 光学(聚焦) 聚类分析 人工智能 数学 哲学 语言学 物理 几何学 量子力学 进化生物学 光学 生物 程序设计语言
作者
Yuanyuan Wang,X Chen,Shaohua Yu,Hauwa Suleiman Abdullahi,Shangbing Gao,Chao Wang,Xingchao Zhang,Haiyan Zhang,Wenbo Yang,Liguo Zhou
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3844757/v1
摘要

Abstract Wearing inspection safety equipment such as insulating gloves and safety helmets is an important guarantee for safe power operations. Given the low accuracy of the traditional insulating gloves and helmet-wearing detection algorithm and the problems of missed detection and false detection, this paper proposes an improved safety equipment wearing detection model named RepGFPN-YOLOv5 based on YOLOv5. This paper first uses the K-Means + + algorithm to analyze the data set for Anchor parameter size re-clustering to optimize the target anchor box size; secondly, it uses the neck network (Efficient Reparameterized Generalized Feature Pyramid Network, RepGFPN), which combines the efficient layer aggregation network ELAN and the re-parameterization mechanism), to reconstruct the YOLOv5 neck network to improve the feature fusion ability of the neck network; reintroduce the coordinate attention mechanism (Coordinate Attention, CA) to focus on small target feature information; finally, use WIoU_Loss as the loss function of the improved model to reduce prediction errors. Experimental results show that the RepGFPN-YOLOv5 model achieves an accuracy increase of 2.1% and an mAP value of 2.3% compared with the original YOLOv5 network, and detection speed of the improved model reaches 89FPS.The code: https://github.com/CVChenXC/RepGFPN-YOLOv5.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12秒前
李娇完成签到 ,获得积分10
14秒前
SciGPT应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
25秒前
德拉科发布了新的文献求助30
32秒前
37秒前
45秒前
52秒前
兴尽晚回舟完成签到 ,获得积分10
52秒前
54秒前
灵巧的代芙完成签到 ,获得积分10
56秒前
Raunio完成签到,获得积分10
59秒前
1分钟前
德拉科完成签到,获得积分10
1分钟前
1分钟前
1分钟前
mellow完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Yy发布了新的文献求助10
1分钟前
1分钟前
2分钟前
无花果应助zzb采纳,获得10
2分钟前
2分钟前
Panther完成签到,获得积分10
2分钟前
2分钟前
YVO4完成签到 ,获得积分10
2分钟前
zzb发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
hhq完成签到 ,获得积分10
2分钟前
Criminology34应助XizheWang采纳,获得30
3分钟前
Yy完成签到,获得积分20
3分钟前
ybk666完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091