Searching a Compact Architecture for Robust Multi-Exposure Image Fusion

计算机科学 推论 灵活性(工程) 人工智能 图像融合 图像(数学) 编码(集合论) 特征提取 建筑 像素 计算机视觉 数据挖掘 模式识别(心理学) 艺术 视觉艺术 统计 数学 集合(抽象数据类型) 程序设计语言
作者
Zhu Liu,Jinyuan Liu,Guanyao Wu,Zihang Chen,Xin Fan,Risheng Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2024.3351933
摘要

In recent years, learning-based methods have achieved significant advancements in multi-exposure image fusion. However, two major stumbling blocks hinder the development, including pixel misalignment and inefficient inference. Reliance on aligned image pairs in existing methods causes susceptibility to artifacts due to device motion. Additionally, existing techniques often rely on handcrafted architectures with huge network engineering, resulting in redundant parameters, adversely impacting inference efficiency and flexibility. To mitigate these limitations, this study introduces an architecture search-based paradigm incorporating self-alignment and detail repletion modules for robust multi-exposure image fusion. Specifically, targeting the extreme discrepancy of exposure, we propose the self-alignment module, leveraging scene relighting to constrain the illumination degree for following alignment and feature extraction. Detail repletion is proposed to enhance the texture details of scenes. Additionally, incorporating a hardware-sensitive constraint, we present the fusion-oriented architecture search to explore compact and efficient networks for fusion. The proposed method outperforms various competitive schemes, achieving a noteworthy 3.19% improvement in PSNR for general scenarios and an impressive 23.5% enhancement in misaligned scenarios. Moreover, it significantly reduces inference time by 69.1%. The code will be available at https://github.com/LiuZhu-CV/CRMEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
进击的娇娇完成签到,获得积分10
2秒前
3秒前
潮哈哈耶发布了新的文献求助30
3秒前
温婉的镜子完成签到,获得积分20
3秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Grayball应助科研通管家采纳,获得10
4秒前
劲秉应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
5秒前
SICHEN应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
美好乐松应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
美好乐松应助科研通管家采纳,获得10
5秒前
SICHEN应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得80
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
sandy完成签到,获得积分10
6秒前
lin应助科研通管家采纳,获得10
6秒前
tanzzz发布了新的文献求助10
6秒前
ding应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
SICHEN应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672729
求助须知:如何正确求助?哪些是违规求助? 3228865
关于积分的说明 9782382
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610797
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199