Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123027-123027 被引量:77
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芭乐乐发布了新的文献求助10
刚刚
SY完成签到,获得积分20
1秒前
1秒前
1秒前
英俊的铭应助任罗川采纳,获得10
1秒前
Naixichaohaohe完成签到,获得积分10
1秒前
健壮荠完成签到,获得积分10
1秒前
上官若男应助hearz采纳,获得10
1秒前
2秒前
2秒前
2秒前
千流完成签到,获得积分10
2秒前
从容的子轩完成签到,获得积分10
2秒前
3秒前
小仙完成签到,获得积分10
3秒前
好哥哥完成签到,获得积分0
3秒前
争取发二区完成签到,获得积分10
3秒前
hly发布了新的文献求助10
3秒前
DenM7发布了新的文献求助10
4秒前
4秒前
piao完成签到,获得积分10
4秒前
apex完成签到 ,获得积分10
4秒前
下载文章即可完成签到,获得积分10
5秒前
5秒前
6秒前
skyscraper完成签到,获得积分10
6秒前
JamesPei应助从容的子轩采纳,获得10
6秒前
Francis完成签到,获得积分10
6秒前
健康的宛菡完成签到 ,获得积分10
6秒前
u2u2完成签到,获得积分10
6秒前
引觞甫发布了新的文献求助10
7秒前
7秒前
7秒前
Akim应助芋泥脑袋采纳,获得10
7秒前
CYT发布了新的文献求助10
7秒前
7秒前
linjiebro发布了新的文献求助10
8秒前
在水一方应助tanghong采纳,获得10
8秒前
hyskoa完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516957
求助须知:如何正确求助?哪些是违规求助? 4609934
关于积分的说明 14519101
捐赠科研通 4546890
什么是DOI,文献DOI怎么找? 2491407
邀请新用户注册赠送积分活动 1473077
关于科研通互助平台的介绍 1444956