Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123027-123027 被引量:55
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空白完成签到 ,获得积分10
刚刚
龙眼完成签到,获得积分10
刚刚
谁在说话完成签到,获得积分10
1秒前
科研通AI2S应助qaa2274278941采纳,获得10
2秒前
ned4speed完成签到,获得积分10
2秒前
xcc完成签到,获得积分10
2秒前
无水乙醚完成签到,获得积分10
3秒前
小二郎应助YZ采纳,获得10
4秒前
weifengzhong完成签到,获得积分10
4秒前
AMANI_NAKUPENDA完成签到,获得积分10
4秒前
聪明铸海完成签到,获得积分10
4秒前
zhounini1989完成签到,获得积分10
4秒前
4秒前
4秒前
彩色半烟完成签到,获得积分10
5秒前
6秒前
burno1112完成签到,获得积分10
6秒前
排骨炖豆角完成签到,获得积分10
6秒前
漾漾完成签到,获得积分10
7秒前
qaa2274278941完成签到,获得积分20
7秒前
落后蓝天发布了新的文献求助10
7秒前
最初的远方完成签到,获得积分10
8秒前
8秒前
啊啊啊完成签到,获得积分10
8秒前
8秒前
李开心呀完成签到,获得积分10
8秒前
Howes91完成签到,获得积分10
9秒前
顺利毕业完成签到,获得积分10
9秒前
ps发布了新的文献求助30
9秒前
茜11122关注了科研通微信公众号
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
结实的栾完成签到,获得积分10
10秒前
明理的霸完成签到 ,获得积分10
11秒前
淼淼完成签到,获得积分10
11秒前
11秒前
Bear完成签到 ,获得积分10
11秒前
清脆的天空完成签到,获得积分10
11秒前
一一2完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067259
求助须知:如何正确求助?哪些是违规求助? 4289056
关于积分的说明 13361711
捐赠科研通 4108580
什么是DOI,文献DOI怎么找? 2249784
邀请新用户注册赠送积分活动 1255173
关于科研通互助平台的介绍 1187721