Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123027-123027 被引量:11
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斑其完成签到,获得积分20
1秒前
Jacob完成签到,获得积分10
5秒前
拼搏的笑珊完成签到,获得积分10
5秒前
大宇完成签到,获得积分10
5秒前
充电宝应助真是无奈耶采纳,获得10
6秒前
烟花应助欢喜的晓霜采纳,获得10
6秒前
MXY完成签到,获得积分10
7秒前
Rio关注了科研通微信公众号
8秒前
8秒前
共享精神应助Yvonna采纳,获得10
8秒前
行路难完成签到 ,获得积分10
9秒前
威武好吐司完成签到 ,获得积分10
9秒前
optical完成签到,获得积分10
10秒前
10秒前
巴达天使发布了新的文献求助10
11秒前
yetis发布了新的文献求助10
12秒前
隐形曼青应助Michael采纳,获得10
13秒前
LX发布了新的文献求助10
14秒前
gluwater发布了新的文献求助10
16秒前
小蘑菇完成签到,获得积分10
16秒前
勤恳的断秋完成签到 ,获得积分10
16秒前
18秒前
菜菜完成签到 ,获得积分10
19秒前
湘君发布了新的文献求助10
19秒前
科研通AI2S应助obsession采纳,获得10
19秒前
易柒完成签到 ,获得积分10
20秒前
20秒前
科研通AI2S应助花痴的溪灵采纳,获得10
21秒前
易柒关注了科研通微信公众号
23秒前
24秒前
24秒前
Hh发布了新的文献求助10
25秒前
Master完成签到 ,获得积分10
25秒前
27秒前
超级的鞅发布了新的文献求助10
27秒前
Michael完成签到,获得积分10
27秒前
batmanrobin完成签到,获得积分10
28秒前
油炸皮卡丘应助11采纳,获得10
29秒前
嘉的科研发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813701
关于积分的说明 7901715
捐赠科研通 2473342
什么是DOI,文献DOI怎么找? 1316778
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175