Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123027-123027 被引量:37
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳荟完成签到,获得积分10
刚刚
1秒前
1秒前
joejo1124完成签到 ,获得积分10
2秒前
sl发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
3秒前
爱吃藕粉凉羹的奶油完成签到,获得积分20
4秒前
动听煎饼完成签到 ,获得积分10
5秒前
明理冬瓜完成签到,获得积分10
5秒前
bkagyin应助cldg采纳,获得10
5秒前
小马甲应助不站在雾里采纳,获得10
5秒前
pp完成签到 ,获得积分0
6秒前
zhangjianzeng完成签到 ,获得积分10
6秒前
史小菜应助云轩采纳,获得20
7秒前
伏伏雅逸发布了新的文献求助10
7秒前
李健应助荒野风采纳,获得10
8秒前
Popeye应助单纯血茗采纳,获得10
8秒前
淡然冬灵发布了新的文献求助10
8秒前
Popeye应助单纯血茗采纳,获得10
8秒前
荔枝的油饼iKun完成签到,获得积分10
9秒前
Bosen完成签到,获得积分10
9秒前
Astraeus完成签到 ,获得积分10
10秒前
fengyuenanche完成签到,获得积分10
11秒前
五虎完成签到,获得积分10
12秒前
Akim应助Rollei采纳,获得10
13秒前
hoshi1018完成签到,获得积分10
14秒前
友好曲奇完成签到,获得积分10
14秒前
dongdong完成签到 ,获得积分10
15秒前
CR7完成签到,获得积分0
16秒前
左丘忻完成签到,获得积分10
16秒前
凤迎雪飘完成签到,获得积分10
16秒前
16秒前
FashionBoy应助云轩采纳,获得10
17秒前
领导范儿应助伏伏雅逸采纳,获得10
17秒前
18秒前
Rondab应助悦耳荟采纳,获得10
18秒前
liqian完成签到,获得积分10
18秒前
易安发布了新的文献求助100
19秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048