Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123027-123027 被引量:37
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zheng能量完成签到,获得积分10
刚刚
hao完成签到,获得积分10
刚刚
刚刚
Survivor完成签到,获得积分10
1秒前
淡然枫完成签到,获得积分10
1秒前
1秒前
1秒前
茉莉猫哟发布了新的文献求助10
1秒前
1秒前
王鹏飞应助lemon采纳,获得10
1秒前
2秒前
2秒前
koko完成签到,获得积分10
2秒前
2秒前
852应助WIN1016采纳,获得10
3秒前
阿柒完成签到,获得积分10
3秒前
鳄鱼蛋发布了新的文献求助10
3秒前
ddd发布了新的文献求助10
3秒前
JamesPei应助传统的钧采纳,获得10
3秒前
3秒前
ding应助feiCheung采纳,获得10
3秒前
4秒前
qiu完成签到,获得积分10
4秒前
yuqinghui98发布了新的文献求助10
4秒前
yue发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Lion完成签到,获得积分20
4秒前
贪玩的甜瓜完成签到,获得积分10
4秒前
漂亮孤兰完成签到 ,获得积分10
4秒前
5秒前
5秒前
大模型应助落后的哈密瓜采纳,获得10
5秒前
抛向天空完成签到,获得积分10
5秒前
lwm不想看文献完成签到 ,获得积分10
5秒前
领导范儿应助陈梦采纳,获得10
6秒前
眼睛大雨筠应助mumu采纳,获得50
6秒前
考拉发布了新的文献求助10
6秒前
YUMI发布了新的文献求助10
6秒前
噼里啪啦完成签到,获得积分10
6秒前
handsomelin完成签到,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827