Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123027-123027 被引量:77
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助耍酷梦菲采纳,获得30
刚刚
刚刚
能干巨人完成签到,获得积分10
刚刚
夕夜完成签到,获得积分10
1秒前
声声慢发布了新的文献求助10
2秒前
3秒前
bkagyin应助Feng5945采纳,获得10
3秒前
浮浮世世发布了新的文献求助80
3秒前
科目三应助liz采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
鹿小新完成签到 ,获得积分0
7秒前
8秒前
高兴的大米完成签到,获得积分10
8秒前
郭丽莹发布了新的文献求助30
10秒前
12秒前
always发布了新的文献求助30
13秒前
qiuqiu0999完成签到,获得积分10
13秒前
505完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
钮钴禄鬼鬼完成签到 ,获得积分10
16秒前
16秒前
Criminology34应助无语的成仁采纳,获得10
17秒前
Criminology34应助无语的成仁采纳,获得10
17秒前
linn发布了新的文献求助10
17秒前
Feng5945发布了新的文献求助10
18秒前
千羽完成签到,获得积分10
18秒前
三三得九完成签到 ,获得积分10
18秒前
19秒前
科研通AI6.1应助明理听云采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
always完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
汉堡包应助111采纳,获得10
26秒前
27秒前
qiuqiu0999发布了新的文献求助10
28秒前
星辰大海应助随机采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240