亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy

计算机科学 入侵检测系统 数据挖掘 人工智能 机器学习 混乱的 过程(计算) 操作系统
作者
Ramkumar Devendiran,Anil V. Turukmane
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123027-123027 被引量:37
标识
DOI:10.1016/j.eswa.2023.123027
摘要

Network intrusion is a huge harmful activity to the privacy of the data sharing network. The activity will result in a cyber-attack, which causes damage to the system as well as the user’s data. Unauthorized activities such as data tampering, illegal access to data and theft of credentials are increasing on the internet world every day. The detection of intrusion may be done by multiple methodologies; still, it is the biggest issue in the networks. Hence, an automated attack classification model is required to promote classification accuracy with fewer error possibilities based on the input parameters. To get relief from the insecurity of data, this paper presents an innovative model using deep networks. The proposed model is a deep learning based network intrusion detection system using a chaotic optimization strategy. The method is pre-processed using data cleansing and M-squared normalization. After pre-processing, the unbalanced datasets are balanced using the Extended Synthetic Sampling approach. After balancing, the features of the dataset are taken out using kernel-assisted principal component analysis. The optimal features are selected by the Chaotic Honey Badger optimization algorithm. After all required features have been extracted, the attacks are classified by the Gated Attention Dual Long Short Term Memory (Dugat-LSTM). The above process is performed using the TON-IOT and NSL-KDD datasets. The prototype is evaluated using the following metrics: accuracy, precision, recall, and F1 score. The accuracy value of the proposed model is 98.76% in the TON-IOT dataset and 99.65% in the NSL-KDD dataset. Thus, the accuracy and robustness of the model show that it outperforms other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Master采纳,获得10
5秒前
12秒前
Master发布了新的文献求助10
18秒前
24秒前
量子星尘发布了新的文献求助10
30秒前
领导范儿应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
al完成签到 ,获得积分10
39秒前
45秒前
早早发布了新的文献求助10
48秒前
科研通AI5应助Djnsbj采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
顺心蜜粉发布了新的文献求助200
2分钟前
2分钟前
Djnsbj发布了新的文献求助10
2分钟前
2分钟前
breeze发布了新的文献求助10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
Daisy完成签到,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助150
3分钟前
自由的无色完成签到 ,获得积分10
3分钟前
ZHH完成签到,获得积分10
3分钟前
3分钟前
feiying发布了新的文献求助10
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
feiying完成签到,获得积分10
3分钟前
CodeCraft应助Djnsbj采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
KSung完成签到 ,获得积分10
5分钟前
5分钟前
临河盗龙发布了新的文献求助30
5分钟前
临河盗龙完成签到,获得积分20
5分钟前
zhanglq完成签到,获得积分10
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204743
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629