Thermally induced phase separation PVDF membrane fabricated by using NaCl coagulation bath: Relation of membrane surface morphology and permeation performance

渗透 聚偏氟乙烯 化学工程 材料科学 凝结 聚乙二醇 溶剂 溶解度 相位反转 化学 色谱法 高分子化学 有机化学 工程类 精神科 生物化学 心理学
作者
Ningyuan Chen,Jie Zhao,Lei Shi,Atsushi Goto,Rong Wang
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:699: 122666-122666 被引量:2
标识
DOI:10.1016/j.memsci.2024.122666
摘要

Efforts have been made in thermally induced phase separation (TIPS) process to modify the morphology of polyvinylidene fluoride (PVDF) membranes in order to improve their permeation performance and mechanical properties. Nevertheless, many methods not only altered the outer surface but also impacted the overall membrane structure, resulting in a trade-off between permeability and mechanical properties. In this study, we utilized a modified TIPS process to refine the outer surface morphology without altering the bulk structure. This was achieved by introducing NaCl in the coagulation bath. The PVDF membranes were fabricated using a dope with water insoluble diluent dimethyl phthalate (DMP) as main solvent and water-soluble additives polyethylene glycol 400 (PEG400)/triethylene glycol (TEG) as pore formers. The inclusion of NaCl in the coagulation bath serves to decrease the solubility of PEG within this medium, owing to the salting-out effect. Consequently, the NaCl concentration in the coagulation bath emerges as a crucial factor in regulating the migration of PEG400 toward the membrane surface. This control mechanism facilitates the precise adjustment of the outer surface morphology in the fabrication of membranes. As the NaCl concentration increases in the coagulation bath, the outer surface of the fabricated membrane transited from a mesh-like structure to a spherulite structure. As 0.5 mol L−1 NaCl was added to the coagulation bath, the membranes displayed a pure water permeability of 1073.9 L m−2 h−1 bar−1 while maintaining a narrow pore size distribution. Compared to the membranes fabricated without NaCl addition, the increment of the PWP contributed to the slight increase in mean pore size from 65 nm to 84 nm. Meanwhile, the water-insoluble diluent DMP was not affected by the addition of NaCl, which means that the bulk structure of the membrane could be maintained. Consequently, the increase in permeability did not compromise the mechanical properties of the membranes. All the membranes fabricated in this study maintained a reasonable tensile strength of approximately 3 MPa. This study introduces a simple and environmental method to increase the permeability effectively and fine-tune the pore size of the TIPS membranes while having little effect on the bulk structure. Furthermore, the study provides valuable insights into how changes in outer surface morphology can impact the pore size and permeability of TIPS PVDF membranes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
余哈哈发布了新的文献求助10
1秒前
3秒前
所所应助AARON采纳,获得10
4秒前
刘1完成签到 ,获得积分10
5秒前
天蓝完成签到,获得积分10
6秒前
领导范儿应助王贤平采纳,获得10
7秒前
7秒前
岑中归月发布了新的文献求助10
7秒前
美好斓发布了新的文献求助10
7秒前
8秒前
9秒前
www完成签到 ,获得积分10
10秒前
Chenzhs发布了新的文献求助10
10秒前
隐形曼青应助医学小渣渣采纳,获得10
11秒前
摸俞发布了新的文献求助10
11秒前
默默的恶天完成签到,获得积分20
11秒前
12秒前
Ginger发布了新的文献求助20
12秒前
在水一方应助不加糖采纳,获得10
12秒前
威武的夜绿完成签到,获得积分10
14秒前
夫列杰尼发布了新的文献求助10
14秒前
爱睡觉的森森完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
喝儿何发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
21秒前
朱珏虹完成签到,获得积分10
22秒前
yuki发布了新的文献求助10
24秒前
夫列杰尼完成签到,获得积分10
24秒前
24秒前
梨花雨凉完成签到,获得积分10
25秒前
王贤平发布了新的文献求助10
25秒前
kevindm完成签到,获得积分10
26秒前
26秒前
S1998发布了新的文献求助20
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109