A new feature boosting based continual learning method for bearing fault diagnosis with incremental fault types

Boosting(机器学习) 遗忘 人工智能 断层(地质) 机器学习 特征(语言学) 计算机科学 模式识别(心理学) 工程类 地质学 地震学 语言学 哲学
作者
Zhenzhong He,Changqing Shen,Bojian Chen,Juanjuan Shi,Weiguo Huang,Zhongkui Zhu,Dong Wang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102469-102469 被引量:33
标识
DOI:10.1016/j.aei.2024.102469
摘要

Rotating machinery can unexpectedly generate many new fault types under changing operating conditions. The capability of fault diagnostic models to adapt and acquire knowledge regarding new fault types is increasingly vital. However, traditional deep learning-based fault diagnosis models often encounter the challenge of catastrophic forgetting when facing new fault types. Numerous attempts were trapped with the stability–plasticity dilemma when tackling this phenomenon. In this study, we draw inspiration from the gradient boosting algorithm and propose a feature boosting based continual learning method. This method allows the diagnostic model to continuously and adaptively acquire knowledge of new fault types. Initially, the concept of gradient boosting is employed to construct an initial fault diagnostic model. Then, new modules are continuously extended dynamically for the initial diagnostic model to fit the residuals between the actual label and the output of the initial diagnostic model. Finally, to maintain the backbone of the fault diagnostic model as a single one, redundant parameters and feature dimensions are removed using an effective distillation strategy. Experimental results demonstrate that the feature boosting based continual learning method effectively mitigates catastrophic forgetting and enhances the plasticity of the fault diagnosis model, outperforming other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
刚刚
Hyc28441711发布了新的文献求助10
刚刚
一问三不知先生完成签到,获得积分10
刚刚
春风沂水发布了新的文献求助40
1秒前
云端梦境发布了新的文献求助10
1秒前
2秒前
2秒前
奇怪的茶叶菌完成签到,获得积分10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Dali应助科研通管家采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
社会主义接班人完成签到 ,获得积分10
4秒前
ilihe应助科研通管家采纳,获得10
4秒前
Stella应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
GUKGO发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
SYX发布了新的文献求助10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066