Prediction of Hematoma Expansion in Intracerebral Hemorrhage in 24 Hours by Machine Learning Algorithm

医学 算法 机器学习 随机森林 人工智能 逻辑回归 接收机工作特性 脑出血 支持向量机 血肿 放射科 计算机科学 外科 内科学 格拉斯哥昏迷指数
作者
Chaonan Du,Yan Li,Mingfei Yang,Qingfang Ma,Si-Kai Ge,Chiyuan Ma
出处
期刊:World Neurosurgery [Elsevier]
卷期号:185: e475-e483
标识
DOI:10.1016/j.wneu.2024.02.058
摘要

The significance of non-contrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms. Four machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours. A total of 604 patients were included, with 326 being male, and 112 experiencing HE. The findings from machine learning algorithms revealed that CT image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability. CT imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junhan发布了新的文献求助10
刚刚
刚刚
Ergou完成签到 ,获得积分20
1秒前
1秒前
wrzzz完成签到,获得积分10
2秒前
喝水吗完成签到,获得积分10
2秒前
呼吁完成签到,获得积分10
3秒前
嘻嘻关注了科研通微信公众号
4秒前
wuhaixia完成签到,获得积分10
4秒前
wrzzz发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
8秒前
9秒前
10秒前
转眼间发布了新的文献求助10
11秒前
songnvshi完成签到 ,获得积分20
11秒前
充电宝应助guugen采纳,获得10
13秒前
14秒前
平常馒头完成签到 ,获得积分10
15秒前
超帅往事发布了新的文献求助10
15秒前
16秒前
乐乐应助花卷采纳,获得10
17秒前
俭朴涵山发布了新的文献求助100
19秒前
20秒前
21秒前
嘻嘻发布了新的文献求助10
23秒前
汉堡包应助介电发nature采纳,获得10
24秒前
真正的研友完成签到,获得积分10
24秒前
ChenLi完成签到,获得积分10
24秒前
25秒前
温婉的乞完成签到,获得积分10
25秒前
超帅往事完成签到,获得积分10
26秒前
27秒前
科研天王发布了新的文献求助10
30秒前
小胡发布了新的文献求助10
32秒前
宋正平完成签到,获得积分10
33秒前
35秒前
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258198
求助须知:如何正确求助?哪些是违规求助? 2899971
关于积分的说明 8308552
捐赠科研通 2569242
什么是DOI,文献DOI怎么找? 1395567
科研通“疑难数据库(出版商)”最低求助积分说明 653130
邀请新用户注册赠送积分活动 631036