亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Hematoma Expansion in Intracerebral Hemorrhage in 24 Hours by Machine Learning Algorithm

医学 算法 机器学习 随机森林 人工智能 逻辑回归 接收机工作特性 脑出血 支持向量机 血肿 放射科 计算机科学 外科 内科学 格拉斯哥昏迷指数
作者
Chaonan Du,Yan Li,Mingfei Yang,Qingfang Ma,Sikai Ge,Chiyuan Ma
出处
期刊:World Neurosurgery [Elsevier]
卷期号:185: e475-e483
标识
DOI:10.1016/j.wneu.2024.02.058
摘要

The significance of non-contrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms. Four machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours. A total of 604 patients were included, with 326 being male, and 112 experiencing HE. The findings from machine learning algorithms revealed that CT image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability. CT imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴蜜蜂完成签到 ,获得积分10
14秒前
48秒前
量子星尘发布了新的文献求助10
53秒前
1分钟前
抚琴祛魅完成签到 ,获得积分10
1分钟前
重重完成签到 ,获得积分10
1分钟前
qiaorankongling完成签到 ,获得积分10
1分钟前
田様应助he采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
MrRen完成签到,获得积分10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
MrRen发布了新的文献求助10
2分钟前
木昆完成签到 ,获得积分10
2分钟前
Giny完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
挣钱抱男模完成签到,获得积分10
2分钟前
2分钟前
he发布了新的文献求助10
3分钟前
Orange应助he采纳,获得10
3分钟前
浮游应助挣钱抱男模采纳,获得10
3分钟前
我是老大应助YY采纳,获得30
3分钟前
3分钟前
一只鲨呱完成签到 ,获得积分10
4分钟前
灵巧的代芙完成签到 ,获得积分10
4分钟前
5分钟前
烟花应助朗源Wu采纳,获得10
5分钟前
5分钟前
ZZ发布了新的文献求助10
5分钟前
5分钟前
6分钟前
开朗子默发布了新的文献求助20
6分钟前
执着的草丛完成签到,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
gooooood完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
梅者如西发布了新的文献求助30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470165
求助须知:如何正确求助?哪些是违规求助? 4573063
关于积分的说明 14338019
捐赠科研通 4500079
什么是DOI,文献DOI怎么找? 2465528
邀请新用户注册赠送积分活动 1453892
关于科研通互助平台的介绍 1428523