Prediction of Hematoma Expansion in Intracerebral Hemorrhage in 24 Hours by Machine Learning Algorithm

医学 算法 机器学习 随机森林 人工智能 逻辑回归 接收机工作特性 脑出血 支持向量机 血肿 放射科 计算机科学 外科 内科学 格拉斯哥昏迷指数
作者
Chaonan Du,Yan Li,Mingfei Yang,Qingfang Ma,Sikai Ge,Chiyuan Ma
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:185: e475-e483
标识
DOI:10.1016/j.wneu.2024.02.058
摘要

The significance of non-contrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms. Four machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours. A total of 604 patients were included, with 326 being male, and 112 experiencing HE. The findings from machine learning algorithms revealed that CT image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability. CT imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eleven888关注了科研通微信公众号
1秒前
1秒前
林机一动完成签到,获得积分10
1秒前
11完成签到,获得积分10
1秒前
2秒前
小v1212完成签到,获得积分20
2秒前
lemon发布了新的文献求助10
3秒前
zzzxx完成签到,获得积分10
4秒前
如来发布了新的文献求助20
4秒前
lgq12697应助萤火虫采纳,获得10
4秒前
4秒前
岩岩岩完成签到,获得积分10
4秒前
科研通AI6应助Matthew_G采纳,获得10
5秒前
Hhd完成签到,获得积分10
5秒前
银匠完成签到,获得积分10
5秒前
什么完成签到,获得积分10
5秒前
CodeCraft应助NEO采纳,获得10
6秒前
11发布了新的文献求助10
6秒前
beyondjun发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
7秒前
YA关注了科研通微信公众号
7秒前
panda_elvis发布了新的文献求助10
7秒前
7秒前
8秒前
香蕉觅云应助dg_fisher采纳,获得10
8秒前
8秒前
8秒前
上官若男应助ppzy采纳,获得10
9秒前
9秒前
Lucas应助眉间雪采纳,获得10
9秒前
10秒前
11秒前
Eujay发布了新的文献求助10
11秒前
咚咚完成签到,获得积分10
11秒前
笑点低紊完成签到,获得积分10
12秒前
111关闭了111文献求助
12秒前
12秒前
傅傅发布了新的文献求助10
13秒前
13秒前
zhui发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709