Prediction of Hematoma Expansion in Intracerebral Hemorrhage in 24 Hours by Machine Learning Algorithm

医学 算法 机器学习 随机森林 人工智能 逻辑回归 接收机工作特性 脑出血 支持向量机 血肿 放射科 计算机科学 外科 内科学 格拉斯哥昏迷指数
作者
Chaonan Du,Yan Li,Mingfei Yang,Qingfang Ma,Sikai Ge,Chiyuan Ma
出处
期刊:World Neurosurgery [Elsevier]
卷期号:185: e475-e483
标识
DOI:10.1016/j.wneu.2024.02.058
摘要

The significance of non-contrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms. Four machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours. A total of 604 patients were included, with 326 being male, and 112 experiencing HE. The findings from machine learning algorithms revealed that CT image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability. CT imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你去打输出完成签到 ,获得积分10
刚刚
wop111发布了新的文献求助10
1秒前
sh关闭了sh文献求助
3秒前
彭甜完成签到 ,获得积分20
3秒前
3秒前
Akim应助WANGJD采纳,获得10
3秒前
沉静的夜玉完成签到,获得积分10
4秒前
5秒前
兔小豆完成签到,获得积分10
5秒前
llooggch完成签到,获得积分10
6秒前
biu发布了新的文献求助10
6秒前
迷路鸭子完成签到,获得积分10
8秒前
8秒前
Lau发布了新的文献求助10
8秒前
斯文败类应助hzy采纳,获得10
11秒前
研友_VZG7GZ应助微光熠采纳,获得10
11秒前
柏6完成签到 ,获得积分10
12秒前
酷波er应助biu采纳,获得10
14秒前
xiaoyao完成签到,获得积分10
14秒前
美丽小之给美丽小之的求助进行了留言
15秒前
隐形曼青应助rsy采纳,获得10
16秒前
无花果应助俞事采纳,获得10
17秒前
沙lulu沙完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
虚幻的惜筠完成签到 ,获得积分10
23秒前
菘蓝泽蓼完成签到,获得积分10
23秒前
丘比特应助迷路鸭子采纳,获得10
23秒前
标致的幼菱完成签到,获得积分10
25秒前
草莓冰茶发布了新的文献求助10
26秒前
虚幻的惜筠关注了科研通微信公众号
26秒前
27秒前
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417873
求助须知:如何正确求助?哪些是违规求助? 4533610
关于积分的说明 14141290
捐赠科研通 4449828
什么是DOI,文献DOI怎么找? 2440962
邀请新用户注册赠送积分活动 1432747
关于科研通互助平台的介绍 1410013