Prediction of Hematoma Expansion in Intracerebral Hemorrhage in 24 Hours by Machine Learning Algorithm

医学 算法 机器学习 随机森林 人工智能 逻辑回归 接收机工作特性 脑出血 支持向量机 血肿 放射科 计算机科学 外科 内科学 格拉斯哥昏迷指数
作者
Chaonan Du,Yan Li,Mingfei Yang,Qingfang Ma,Sikai Ge,Chiyuan Ma
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:185: e475-e483
标识
DOI:10.1016/j.wneu.2024.02.058
摘要

The significance of non-contrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms. Four machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours. A total of 604 patients were included, with 326 being male, and 112 experiencing HE. The findings from machine learning algorithms revealed that CT image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability. CT imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiang发布了新的文献求助10
刚刚
ddddd关注了科研通微信公众号
刚刚
芹菜煎蛋完成签到,获得积分10
1秒前
1秒前
1秒前
Ava应助g_f采纳,获得10
2秒前
归尘发布了新的文献求助10
3秒前
charm12发布了新的文献求助10
4秒前
wangchunguang完成签到,获得积分20
4秒前
yunai发布了新的文献求助10
4秒前
zc完成签到 ,获得积分10
4秒前
5秒前
5秒前
香蕉觅云应助束负允三金采纳,获得10
5秒前
冷静如柏完成签到,获得积分10
6秒前
愛研究完成签到,获得积分10
6秒前
Kashing完成签到,获得积分10
7秒前
华仔应助渡水寻彼岸采纳,获得10
7秒前
研友_VZG7GZ应助lilili采纳,获得10
7秒前
xiang完成签到,获得积分10
8秒前
star009完成签到,获得积分10
8秒前
sallyshe发布了新的文献求助10
9秒前
刘wt完成签到,获得积分10
9秒前
llee2005完成签到,获得积分10
9秒前
whm发布了新的文献求助10
9秒前
9秒前
小离心机完成签到,获得积分10
10秒前
10秒前
酷波er应助清澜庭采纳,获得10
10秒前
tramp应助霸气的连虎采纳,获得10
10秒前
Fuffu完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
刘wt发布了新的文献求助10
12秒前
12秒前
gapsong完成签到,获得积分10
12秒前
Jilin发布了新的文献求助20
13秒前
14秒前
SYLH应助yy采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128