Prediction of Hematoma Expansion in Intracerebral Hemorrhage in 24 Hours by Machine Learning Algorithm

医学 算法 机器学习 人工智能 脑出血 血肿 计算机科学 外科 蛛网膜下腔出血
作者
Chaonan Du,Yan Li,Mingfei Yang,Qingfang Ma,Sikai Ge,Chiyuan Ma
出处
期刊:World Neurosurgery [Elsevier]
卷期号:185: e475-e483 被引量:3
标识
DOI:10.1016/j.wneu.2024.02.058
摘要

The significance of non-contrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms. Four machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours. A total of 604 patients were included, with 326 being male, and 112 experiencing HE. The findings from machine learning algorithms revealed that CT image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability. CT imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天空发布了新的文献求助10
1秒前
yy111发布了新的文献求助10
1秒前
1秒前
平城落叶发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
风清扬发布了新的文献求助10
5秒前
大方雁露完成签到,获得积分20
6秒前
jiqipek关注了科研通微信公众号
6秒前
6秒前
6秒前
7秒前
7秒前
天空完成签到,获得积分10
8秒前
xxxx发布了新的文献求助10
8秒前
9秒前
dlfg发布了新的文献求助10
9秒前
赵一发布了新的文献求助10
9秒前
李健应助咦哈哈哈采纳,获得10
10秒前
winwin完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
Grace发布了新的文献求助10
11秒前
zss完成签到 ,获得积分10
11秒前
东隅完成签到,获得积分10
12秒前
QWE发布了新的文献求助10
12秒前
生动的又晴完成签到 ,获得积分10
12秒前
方QL完成签到,获得积分20
12秒前
笔墨留香完成签到,获得积分10
12秒前
微笑的依凝完成签到,获得积分10
13秒前
13秒前
瑾风阳完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191