Deep leaning in food safety and authenticity detection: An integrative review and future prospects

卷积神经网络 计算机科学 人工智能 机器学习 深度学习 领域(数学) 稳健性(进化) 食品安全 算法 人工神经网络 生成对抗网络 模式 生成语法 医学 社会科学 生物化学 化学 数学 病理 社会学 纯数学 基因
作者
Yan Wang,Hui‐Wen Gu,Xiaoli Yin,Tao Geng,Wanjun Long,Haiyan Fu,Yuanbin She
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:146: 104396-104396 被引量:34
标识
DOI:10.1016/j.tifs.2024.104396
摘要

Food safety is an important public health issue, and deep learning (DL) algorithms can provide powerful tools and methods for food safety and authenticity detection. Compared with chemometric algorithms and traditional machine learning algorithms, the performances of DL algorithms are improved in many aspects. By learning and analyzing a large amount of data, DL models can improve the efficiency and accuracy of food safety and authenticity detection, helping to ensure the public health and safety. This paper reviews some commonly used chemometric algorithms, traditional machine learning algorithms, and popular DL algorithms. Among them, special attentions are paid to convolutional neural network (CNN), fully convolutional network (FCN) and generative adversarial network (GAN). Moreover, the auxiliary effect of GAN on CNN is highlighted. Finally, this paper revisits recent applications of DL algorithms in the field of food safety and authenticity detection, and prospects the challenges and future directions of DL algorithms in this field. Although DL has made many achievements in the field of food safety and authenticity detection, there is still a great potential for development. For example, the data augmentation function of GAN can assist CNN to obtain more training samples, thus improving the recognition rate. In addition, multimodal neural network (MNN) or multimodal attention network (MAN) can be also used to achieve the fusion of data from different modalities to further improve the robustness and accuracy of DL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
口口完成签到 ,获得积分10
1秒前
小星星发布了新的文献求助10
4秒前
4秒前
346952262发布了新的文献求助10
5秒前
小蘑菇应助黄油曲奇Nana采纳,获得30
5秒前
司连喜发布了新的文献求助10
5秒前
5秒前
nn发布了新的文献求助10
5秒前
纯白汉玉完成签到,获得积分10
6秒前
古芍昂发布了新的文献求助10
6秒前
权志龙发布了新的文献求助20
7秒前
8秒前
9秒前
怡春院李老鸨完成签到,获得积分10
9秒前
顾矜应助Frank采纳,获得10
9秒前
李健的粉丝团团长应助zhb采纳,获得10
9秒前
盈滢完成签到 ,获得积分10
12秒前
Akim应助古芍昂采纳,获得10
13秒前
13秒前
nn完成签到,获得积分10
14秒前
黄黄黄应助西西里柠檬采纳,获得100
16秒前
小星星完成签到,获得积分10
16秒前
18秒前
18秒前
柠m发布了新的文献求助100
18秒前
完美世界应助lan采纳,获得10
19秒前
司连喜完成签到,获得积分10
19秒前
搜集达人应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
CyrusSo524应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得20
20秒前
Orange应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070