Deep leaning in food safety and authenticity detection: An integrative review and future prospects

卷积神经网络 计算机科学 人工智能 机器学习 深度学习 领域(数学) 稳健性(进化) 食品安全 算法 人工神经网络 生成对抗网络 模式 生成语法 基因 医学 生物化学 病理 社会学 化学 纯数学 社会科学 数学
作者
Yan Wang,Hui‐Wen Gu,Xiaoli Yin,Tao Geng,Wanjun Long,Haiyan Fu,Yuanbin She
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:146: 104396-104396 被引量:73
标识
DOI:10.1016/j.tifs.2024.104396
摘要

Food safety is an important public health issue, and deep learning (DL) algorithms can provide powerful tools and methods for food safety and authenticity detection. Compared with chemometric algorithms and traditional machine learning algorithms, the performances of DL algorithms are improved in many aspects. By learning and analyzing a large amount of data, DL models can improve the efficiency and accuracy of food safety and authenticity detection, helping to ensure the public health and safety. This paper reviews some commonly used chemometric algorithms, traditional machine learning algorithms, and popular DL algorithms. Among them, special attentions are paid to convolutional neural network (CNN), fully convolutional network (FCN) and generative adversarial network (GAN). Moreover, the auxiliary effect of GAN on CNN is highlighted. Finally, this paper revisits recent applications of DL algorithms in the field of food safety and authenticity detection, and prospects the challenges and future directions of DL algorithms in this field. Although DL has made many achievements in the field of food safety and authenticity detection, there is still a great potential for development. For example, the data augmentation function of GAN can assist CNN to obtain more training samples, thus improving the recognition rate. In addition, multimodal neural network (MNN) or multimodal attention network (MAN) can be also used to achieve the fusion of data from different modalities to further improve the robustness and accuracy of DL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adazbq完成签到 ,获得积分10
刚刚
刚刚
zx完成签到,获得积分10
1秒前
一颗糖炒栗子完成签到,获得积分10
1秒前
杨旭完成签到 ,获得积分10
1秒前
阿辉完成签到 ,获得积分10
3秒前
传奇3应助Hearing胡采纳,获得10
3秒前
5秒前
6秒前
阿辉发布了新的文献求助10
6秒前
7秒前
脑洞疼应助深情素阴采纳,获得10
7秒前
8秒前
不过尔尔完成签到 ,获得积分10
9秒前
9秒前
11秒前
冰姗完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
天天完成签到,获得积分10
14秒前
yz47发布了新的文献求助10
14秒前
Ambi发布了新的文献求助10
14秒前
llllll完成签到 ,获得积分10
15秒前
明子完成签到 ,获得积分10
15秒前
天天发布了新的文献求助10
17秒前
伶俐的高烽完成签到 ,获得积分10
18秒前
kpzwov完成签到 ,获得积分10
18秒前
18秒前
Tao完成签到 ,获得积分10
19秒前
看月亮不睡觉完成签到,获得积分10
19秒前
yz47完成签到,获得积分10
19秒前
进取拼搏完成签到,获得积分10
20秒前
23秒前
善学以致用应助明亮荔枝采纳,获得10
23秒前
深沉坤完成签到 ,获得积分10
24秒前
24秒前
所所应助柴胡采纳,获得10
27秒前
29秒前
LU发布了新的文献求助10
29秒前
坚强的安双完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838