材料科学
超级电容器
电容
功率密度
电极
储能
电解质
电容器
光电子学
自愈水凝胶
离子电导率
纳米技术
离子
离子键合
电压
电气工程
功率(物理)
高分子化学
化学
物理
物理化学
量子力学
工程类
作者
Qian Xie,Chengjie Yi,Hanning Zhang,Huan Xia,Gang Xu,Chunyang Miao,Yang Li,Tao Shui,Wei Zhang,ZhengMing Sun
标识
DOI:10.1002/aenm.202303592
摘要
Abstract To enhance the areal energy density of current flexible energy storage devices, hybrid capacitors combining the advantages of supercapacitors and batteries are proposed and further enhanced by incorporating the 3D interdigital structure design. However, uneven electric field distribution and hindered ion diffusion kinetics due to the non‐electroactive components in these devices limit the enhancement of areal electrochemical performances when expanding the electrodes longitudinally. Herein, hydrogels with high ionic conductivity and high mechanical stability are designed to accommodate Zn 2+ ‐containing electrolytes and integrated with Ti 3 C 2 T x ‐MXene electrodes to assemble flexible Zn‐ion hybrid capacitors (ZIHCs). Fully encapsulated by ionic conductive hydrogels, 3D interdigital electrodes enable omnidirectional ion transport and unimpeded ionic accessibility, facilitating adequate electrode reactions, rapid energy storage, and uniform energy distribution. Hence, the all‐hydrogel‐encapsulated ZIHC achieved a 50‐fold increase in capacitance with a quadrupled electrode thickness, exhibiting a large areal capacitance of 1432 mF cm −2 and an energy density of 389.7 µWh cm −2 without sacrificing power density and rate performance. Finite element simulations further illustrate the uniform distribution of potential, electric field intensity, and energy density in this structure. In addition, the device shows great stability under deformation, excellent adhesion, and underwater workability, demonstrating great promise for next‐generation wearable energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI