化学
电位滴定法
检出限
电位传感器
离子
硅
荧光
纳米技术
比色法
分析化学(期刊)
色谱法
材料科学
有机化学
量子力学
物理
作者
Chiyu Ma,Yiwei Qiu,Tao Liang,Nan Jiang,Liubing Kong,Jianguo Wu,Xianyou Sun,Guangqing Ren,Xinwei Wei,Ping Wang,Hao Wan
标识
DOI:10.1016/j.aca.2024.342282
摘要
Ionic calcium (Ca2+) plays a crucial role in maintaining normal physiological and biochemical functions within the human body. Detecting the concentration of Ca2+ is of utmost significance for various purposes, including disease screening, cellular metabolism research, and evaluating drug effectiveness. However, current detection approaches such as fluorescence and colorimetry face limitations due to complex labeling techniques and the inability to track changes in Ca2+ concentration. In recent years, extensive research has been conducted in this field to explore label-free and efficient approaches. In this study, a novel light-addressed potentiometric sensor (LAPS) using silicon-on-sapphire technology, has been successfully developed for Ca2+ sensing. The Ca2+-sensitive LAPS achieved a wide-range detection of Ca2+, ranging from 10−2 M to 10−7 M, with an impressive detection limit of 100 nM. These advancements are attributed to the ultra-thin silicon layer, silicon dioxide layer, and solid-state silicon rubber sensitive membrane around 6 μm. Furthermore, the sensor demonstrated the ability to dynamically monitor fluctuations in Ca2+ concentration ranging from 10−9 M to 10−2 M within a solution. Its remarkable selectivity, specificity, and long-term stability have facilitated its successful application in the detection of Ca2+ in human serum and urine. This work presents a Ca2+-sensitive sensor that combines a low detection limit and a wide detection range. The development represents the emergence of a label-free and rapid Ca2+ detection tool with immense prospects in home-based health monitoring, community disease screening, as well as cellular metabolism, and drug screening evaluations.
科研通智能强力驱动
Strongly Powered by AbleSci AI