异常检测
人工智能
模式识别(心理学)
计算机科学
自编码
异常(物理)
不可用
数学
深度学习
物理
凝聚态物理
统计
作者
Renuka Sharma,Hengcan Shi,Jianfei Cai,Suyash P. Awate,N. Birbilis
标识
DOI:10.1109/dicta60407.2023.00045
摘要
Anomaly detection is a fundamental and challenging task in computer vision, which determines whether an image contains anomaly or not. Prior works using autoencoders for anomaly detection are based on pixel-wise learning in the continuous latent space, which is inefficient since images contain a lot of redundant information. Meanwhile, for most of the anomaly detection methods, the training set only contains normal data due to the unavailability or paucity of labeled anomalous data. However, an exposure to a fraction of labeled anomalous images, even infinitesimal in size in comparison to the amount of normal data, can significantly improve the anomaly detection performance while slightly increasing labeling costs. In this paper, we propose a Semi-Supervised Vector Quantized Variational Autoencoder (ss-VQ-VAE) for anomaly detection. Our ss-VQ-VAE leverages discretized latent space embeddings of VQ-VAE [1] to reduce noise and redundancies for better reconstruction of normal data in comparison with anomalous data. At the core of ss-VQ-VAE, we introduce a new loss to incorporate a few anomalous images available to train the model. In addition, based on the VQ-VAE architecture, we further propose an anomaly score that compares the encoded features of the input with the dictionary embeddings in VQ-VAE to make more accurate predictions. Experimental results on two datasets, MVTec and the corrosion dataset, show the significance of the novelties in our method. The code is available online 1 . 1 https://github.com/RenukaSharma/ss-vq-vae
科研通智能强力驱动
Strongly Powered by AbleSci AI