已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Method—An Investigation Into Post-Hoc Analysis Methods for Electrochemical Biosensor Data

生物传感器 电化学 事后 计算机科学 析因分析 纳米技术 材料科学 化学 电极 统计 数学 医学 物理化学 牙科
作者
Desmond Teo Kai Xiang,Tomás Maul,Michelle T.T. Tan
出处
期刊:Journal of The Electrochemical Society [Institute of Physics]
卷期号:171 (2): 027525-027525 被引量:2
标识
DOI:10.1149/1945-7111/ad2313
摘要

Recently, researchers are exploring machine learning (ML) algorithms as post-hoc analysis tools to improve performances of electrochemical biosensors (EBs). While reported results are promising, yet comprehensive study on optimal methods for model development is still lacking. For improved efficiency, accuracy, and robustness, it is essential to optimise the relationships between feature extraction techniques and choice of training algorithms. Herein, this paper presents a comparative study between different feature extractions methods, namely principal component analysis (PCA), linear discriminative analysis (LDA), fast Fourier transform (FFT) and discrete wavelet transform (DWT), to compress and extract significant components from differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) datasets. Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models were developed, and their performances were compared with conventional post-analysis methods. The best performing combination for DPV dataset was MLP with DWT, achieving an R 2 of 0.995, and for EIS dataset was MLP with PCA, achieving an R 2 of 0.960, on test set, respectively. The developed models had achieved an average of 0.61% improvement for real sample recovery tests. The presented approaches demonstrated the capabilities of optimised ML models to automate post hoc analysis for more robust outcomes, while eliminating tedium of post-analysis for end users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观静蕾发布了新的文献求助10
2秒前
dt完成签到 ,获得积分10
2秒前
荒木发布了新的文献求助10
3秒前
无奈傲菡发布了新的文献求助10
5秒前
6秒前
6秒前
寒冷的咖啡应助在野采纳,获得20
9秒前
dongsheng发布了新的文献求助10
12秒前
赘婿应助mimi采纳,获得10
13秒前
一行白鹭完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
16秒前
19秒前
朝暮完成签到 ,获得积分10
20秒前
dongsheng完成签到,获得积分10
22秒前
Ava应助西河采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
贰鸟应助科研通管家采纳,获得20
26秒前
斯文败类应助科研通管家采纳,获得10
27秒前
鸣笛应助科研通管家采纳,获得30
27秒前
贰鸟应助科研通管家采纳,获得20
27秒前
科目三应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
27秒前
27秒前
Ylasime发布了新的文献求助10
31秒前
31秒前
32秒前
33秒前
33秒前
34秒前
小鱼完成签到,获得积分10
35秒前
son发布了新的文献求助10
36秒前
Jessica完成签到,获得积分10
36秒前
桃桃发布了新的文献求助10
37秒前
小鱼发布了新的文献求助20
38秒前
40秒前
山居秋暝发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953277
求助须知:如何正确求助?哪些是违规求助? 3498630
关于积分的说明 11092586
捐赠科研通 3229194
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869318
科研通“疑难数据库(出版商)”最低求助积分说明 801417