Lordosis distribution index for predicting mechanical complications after long-level fusion surgery: comparison of Global Alignment and Proportion score and Roussouly classification

医学 逻辑回归 并发症 接收机工作特性 外科 相关性 脊柱融合术 核医学 内科学 数学 几何学
作者
Myung-Sang Moon,Myung-Hoon Shin,Seung-Chan Yoo,Doo Yong Choi,Jong‐Tae Kim
出处
期刊:Journal of neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-9
标识
DOI:10.3171/2023.11.spine23725
摘要

OBJECTIVE Both the Global Alignment and Proportion (GAP) score and Roussouly classification account for the lordosis distribution index (LDI), but the LDI of the GAP score (G-LDI) is typically set to 50%–80%, while the LDI of the Roussouly classification (R-LDI) varies depending on the degree of pelvic incidence (PI). The objective of this study was to validate the ability of the G-LDI to predict mechanical complications and compare it with the predictive probability of R-LDI in patients with long-level fusion surgery. METHODS A total of 171 patients were divided into two groups: 93 in the nonmechanical complication group (non-MC group) and 78 in the mechanical complication group (MC group). The mean age of the participants was 66.79 ± 8.56 years (range 34–83 years), and the mean follow-up period was 45.49 ± 16.20 months (range 24–62 months). The inclusion criteria for the study were patients who underwent > 4 levels of fusion and had > 2 years of follow-up. The predictive models for mechanical complications using the G-LDI and R-LDI were analyzed using binomial logistic regression and receiver operating characteristic analyses. RESULTS There was a significant correlation between R-LDI and PI (r = −0.561, p < 0.001), while there was no correlation between G-LDI and PI (r = 0.132, p = 0.495). In reference to G-LDI, most patients in the non-MC group were classified as having alignment (72, 77.4%), while the MC group had an inhomogeneous composition (aligned: 34, 43.6%; hyperlordosis: 37, 47.4%). The agreement between the G-LDI and R-LDI was moderate (κ = 0.536, p < 0.001) to fair (κ = 0.383, p = 0.011) for patients with average or large PI, but poor (κ = −0.255, p = 0.245) for those with small PI. The areas under the curve for the G-LDI and R-LDI were 0.674 (95% CI, 0.592–0.757) and 0.745 (95% CI, 0.671–0.820), respectively. CONCLUSIONS The R-LDI, which uses a PI-based proportional parameter, enables individual quantification of LL for all PI sizes and has been shown to have a higher accuracy in classifying cases and a stronger correlation with the risk of mechanical complications compared with G-LDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今年离开老登了完成签到,获得积分10
刚刚
6S6完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助150
1秒前
耍酷的冷雪完成签到,获得积分10
1秒前
怡然茗茗完成签到 ,获得积分10
1秒前
无聊的惜文完成签到 ,获得积分10
1秒前
Tina完成签到,获得积分10
6秒前
倾听阳光完成签到 ,获得积分10
6秒前
Double_N完成签到,获得积分10
8秒前
10秒前
fantexi113完成签到,获得积分0
10秒前
窦房结完成签到 ,获得积分10
10秒前
玩命的化蛹完成签到,获得积分10
11秒前
水硕完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助150
13秒前
xiaofeixia完成签到 ,获得积分10
14秒前
随便起个名完成签到,获得积分10
16秒前
HH完成签到,获得积分10
16秒前
chris完成签到,获得积分10
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得150
17秒前
FashionBoy应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得150
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
美丽人生完成签到 ,获得积分10
18秒前
雨后完成签到 ,获得积分10
20秒前
Augenstern完成签到,获得积分10
20秒前
溆玉碎兰笑完成签到 ,获得积分10
22秒前
李大胖胖完成签到 ,获得积分10
22秒前
Edou完成签到 ,获得积分10
22秒前
2275523154完成签到,获得积分10
23秒前
豆浆来点蒜泥完成签到,获得积分10
24秒前
简单完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助150
27秒前
nan完成签到,获得积分10
27秒前
Hh完成签到,获得积分10
29秒前
sun完成签到,获得积分10
33秒前
完美世界应助plateauman采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813