Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China

钻探 油页岩 页岩气 石油工程 构造盆地 地质学 四川盆地 磁导率 采矿工程 地球化学 地貌学 工程类 古生物学 化学 机械工程 生物化学
作者
Jun Yi,ZhongLi Qi,XiangChengZhen Li,Hong Liu,Wei Zhou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:357: 122483-122483 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122483
摘要

Assessment of production potential and prediction of sweet spots in unexploited shale gas wells are crucial technologies for achieving a high success rate in drilling. Most existing methods are only applicable for yield forecasting of shale gas wells with known geological and drilling/completion factors after production. In addition, the shale gas reservoir in the Longmaxi Formation in the southern Sichuan Basin of China is characterized by low porosity, low permeability, and diverse gas reservoir states. Thus, forecasting production from unexploited wells and predicting the exact location of the sweet spot under complex geological conditions have become challenging topic for both academia and industry. According to the first law of geography, shale gas wells that are closer in space have more similar geologic features. Based on this foundation, a machine-learning prediction model based on spatial correlation (SC-MLPM) is proposed for evaluating potential production of shale gas wells in the Changning play located in Longmaxi Formation in the southern Sichuan basin, China. Specifically, an improved K-nearest neighbor algorithm (SC-KNN) based on the spatial correlation characteristics of the exploited wells is designed to estimate the relevant geological factors of the unexploited wells in the same area. In addition, an extreme gradient lifting model based on Huber loss function (Hu-XGB) is developed to predict the potential production of unexploited shale gas wells, and then the shale gas sweet spot area in the research area is predicted quickly and accurately. The experimental results on 88 shale gas wells from Changning play show that the mean relative error of the prediction results of the proposed method is 9.8%. Furthermore, the results also determine that the sweet spots of shale gas wells in the research area are mainly developed in the northwest and northeast directions, and gradually become worse in the southeast direction. Eventually, experimental results for the Fox Creek play in Canada show that the proposed model obtains better predictive performance as the number of gas wells increases, and also verifies the generalizability. This work provides a basis for the efficient development of the research area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yuan88发布了新的文献求助10
刚刚
orixero应助奶油采纳,获得10
刚刚
风中冰香应助thynkz采纳,获得40
1秒前
WSS发布了新的文献求助10
1秒前
琉璃发布了新的文献求助30
1秒前
聪明的珊迪完成签到,获得积分10
2秒前
2秒前
asdffgg814完成签到,获得积分10
3秒前
zero发布了新的文献求助10
4秒前
5秒前
科研通AI6应助LQ采纳,获得10
5秒前
浪费发布了新的文献求助10
5秒前
何大青完成签到,获得积分10
6秒前
6秒前
星辰大海应助韩jl采纳,获得10
8秒前
HuangXintong发布了新的文献求助10
8秒前
8秒前
MozzieMiao完成签到 ,获得积分10
8秒前
科研通AI6应助快乐雅青采纳,获得10
9秒前
TRY发布了新的文献求助10
9秒前
FashionBoy应助afterly采纳,获得10
9秒前
手捣土豆完成签到 ,获得积分10
10秒前
漉lu发布了新的文献求助30
11秒前
执着的海发布了新的文献求助10
11秒前
11秒前
深情的晓露完成签到,获得积分10
12秒前
XYA关注了科研通微信公众号
12秒前
12秒前
薰衣草发布了新的文献求助10
13秒前
13秒前
fen发布了新的文献求助10
14秒前
上官若男应助周周采纳,获得10
15秒前
Akim应助轻松雁蓉采纳,获得10
15秒前
所所应助小宋采纳,获得10
15秒前
不三不四完成签到,获得积分10
16秒前
结实荧荧完成签到,获得积分10
16秒前
L1Young完成签到,获得积分10
16秒前
Paranoid完成签到 ,获得积分10
16秒前
追寻代真发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609