Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China

钻探 油页岩 页岩气 石油工程 构造盆地 地质学 四川盆地 磁导率 采矿工程 地球化学 地貌学 工程类 古生物学 化学 机械工程 生物化学
作者
Jun Yi,ZhongLi Qi,XiangChengZhen Li,Hong Liu,Wei Zhou
出处
期刊:Applied Energy [Elsevier]
卷期号:357: 122483-122483 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122483
摘要

Assessment of production potential and prediction of sweet spots in unexploited shale gas wells are crucial technologies for achieving a high success rate in drilling. Most existing methods are only applicable for yield forecasting of shale gas wells with known geological and drilling/completion factors after production. In addition, the shale gas reservoir in the Longmaxi Formation in the southern Sichuan Basin of China is characterized by low porosity, low permeability, and diverse gas reservoir states. Thus, forecasting production from unexploited wells and predicting the exact location of the sweet spot under complex geological conditions have become challenging topic for both academia and industry. According to the first law of geography, shale gas wells that are closer in space have more similar geologic features. Based on this foundation, a machine-learning prediction model based on spatial correlation (SC-MLPM) is proposed for evaluating potential production of shale gas wells in the Changning play located in Longmaxi Formation in the southern Sichuan basin, China. Specifically, an improved K-nearest neighbor algorithm (SC-KNN) based on the spatial correlation characteristics of the exploited wells is designed to estimate the relevant geological factors of the unexploited wells in the same area. In addition, an extreme gradient lifting model based on Huber loss function (Hu-XGB) is developed to predict the potential production of unexploited shale gas wells, and then the shale gas sweet spot area in the research area is predicted quickly and accurately. The experimental results on 88 shale gas wells from Changning play show that the mean relative error of the prediction results of the proposed method is 9.8%. Furthermore, the results also determine that the sweet spots of shale gas wells in the research area are mainly developed in the northwest and northeast directions, and gradually become worse in the southeast direction. Eventually, experimental results for the Fox Creek play in Canada show that the proposed model obtains better predictive performance as the number of gas wells increases, and also verifies the generalizability. This work provides a basis for the efficient development of the research area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZRL完成签到,获得积分10
1秒前
Anonymous完成签到,获得积分10
1秒前
我思故我在完成签到,获得积分0
1秒前
zhy完成签到,获得积分10
3秒前
3秒前
morry5007发布了新的文献求助30
4秒前
soory完成签到,获得积分10
6秒前
邱琳完成签到,获得积分10
6秒前
meizi0109完成签到 ,获得积分10
6秒前
9秒前
kaidaniel发布了新的文献求助30
9秒前
桃子完成签到 ,获得积分10
10秒前
csj的老父亲完成签到,获得积分10
12秒前
想人陪的飞薇完成签到 ,获得积分10
14秒前
hyxu678完成签到,获得积分10
14秒前
bkagyin应助刻苦棒球采纳,获得10
14秒前
Ali完成签到 ,获得积分10
15秒前
夕荀完成签到,获得积分10
15秒前
xc完成签到,获得积分20
16秒前
HJJHJH完成签到,获得积分10
16秒前
jianglili完成签到,获得积分10
16秒前
andrewyu完成签到,获得积分10
16秒前
QQLL完成签到,获得积分10
17秒前
美好乌冬面完成签到,获得积分10
18秒前
大气的尔蓝完成签到,获得积分10
18秒前
研友_Lpawrn发布了新的文献求助10
18秒前
123完成签到,获得积分10
19秒前
平常的雁凡完成签到,获得积分10
19秒前
19秒前
断了的弦完成签到,获得积分10
20秒前
Criminology34应助Miao采纳,获得10
20秒前
朱佳宁完成签到 ,获得积分10
20秒前
Pie完成签到,获得积分10
21秒前
吃饱再睡完成签到 ,获得积分10
21秒前
demom完成签到,获得积分10
22秒前
细嗅蔷薇完成签到,获得积分10
23秒前
23秒前
英吉利25发布了新的文献求助10
24秒前
宋宋宋宋完成签到,获得积分10
24秒前
YangSY完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378