Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China

钻探 油页岩 页岩气 石油工程 构造盆地 地质学 四川盆地 磁导率 采矿工程 地球化学 地貌学 工程类 古生物学 化学 机械工程 生物化学
作者
Jun Yi,ZhongLi Qi,XiangChengZhen Li,Hong Liu,Wei Zhou
出处
期刊:Applied Energy [Elsevier]
卷期号:357: 122483-122483 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122483
摘要

Assessment of production potential and prediction of sweet spots in unexploited shale gas wells are crucial technologies for achieving a high success rate in drilling. Most existing methods are only applicable for yield forecasting of shale gas wells with known geological and drilling/completion factors after production. In addition, the shale gas reservoir in the Longmaxi Formation in the southern Sichuan Basin of China is characterized by low porosity, low permeability, and diverse gas reservoir states. Thus, forecasting production from unexploited wells and predicting the exact location of the sweet spot under complex geological conditions have become challenging topic for both academia and industry. According to the first law of geography, shale gas wells that are closer in space have more similar geologic features. Based on this foundation, a machine-learning prediction model based on spatial correlation (SC-MLPM) is proposed for evaluating potential production of shale gas wells in the Changning play located in Longmaxi Formation in the southern Sichuan basin, China. Specifically, an improved K-nearest neighbor algorithm (SC-KNN) based on the spatial correlation characteristics of the exploited wells is designed to estimate the relevant geological factors of the unexploited wells in the same area. In addition, an extreme gradient lifting model based on Huber loss function (Hu-XGB) is developed to predict the potential production of unexploited shale gas wells, and then the shale gas sweet spot area in the research area is predicted quickly and accurately. The experimental results on 88 shale gas wells from Changning play show that the mean relative error of the prediction results of the proposed method is 9.8%. Furthermore, the results also determine that the sweet spots of shale gas wells in the research area are mainly developed in the northwest and northeast directions, and gradually become worse in the southeast direction. Eventually, experimental results for the Fox Creek play in Canada show that the proposed model obtains better predictive performance as the number of gas wells increases, and also verifies the generalizability. This work provides a basis for the efficient development of the research area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
经纲完成签到 ,获得积分0
1秒前
小崎完成签到,获得积分10
2秒前
塵埃完成签到,获得积分10
2秒前
鲸落完成签到 ,获得积分10
2秒前
2秒前
所所应助重要的牛排采纳,获得10
2秒前
xjcy应助小太阳采纳,获得10
3秒前
科研修沟发布了新的文献求助10
3秒前
缓激肽完成签到,获得积分10
4秒前
4秒前
我的miemie完成签到,获得积分10
4秒前
嗯哼应助阔达的天晴采纳,获得20
5秒前
5秒前
炸天完成签到 ,获得积分10
5秒前
6秒前
hhhh发布了新的文献求助10
6秒前
独孤完成签到 ,获得积分10
6秒前
我的miemie发布了新的文献求助10
7秒前
润泽完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
青衣发布了新的文献求助10
10秒前
xiaoxiao完成签到 ,获得积分10
10秒前
KBRS完成签到,获得积分10
11秒前
火花发布了新的文献求助10
12秒前
13秒前
tangc发布了新的文献求助10
13秒前
科研通AI2S应助royan2采纳,获得10
14秒前
依依完成签到 ,获得积分10
14秒前
XIXI发布了新的文献求助10
15秒前
应俊完成签到 ,获得积分10
15秒前
小田发布了新的文献求助10
17秒前
19秒前
不懈奋进应助科研通管家采纳,获得60
20秒前
Owen应助科研通管家采纳,获得10
20秒前
几酌应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
Jun应助科研通管家采纳,获得10
20秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388