Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China

钻探 油页岩 页岩气 石油工程 构造盆地 地质学 四川盆地 磁导率 采矿工程 地球化学 地貌学 工程类 古生物学 化学 机械工程 生物化学
作者
Jun Yi,ZhongLi Qi,XiangChengZhen Li,Hong Liu,Wei Zhou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:357: 122483-122483 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122483
摘要

Assessment of production potential and prediction of sweet spots in unexploited shale gas wells are crucial technologies for achieving a high success rate in drilling. Most existing methods are only applicable for yield forecasting of shale gas wells with known geological and drilling/completion factors after production. In addition, the shale gas reservoir in the Longmaxi Formation in the southern Sichuan Basin of China is characterized by low porosity, low permeability, and diverse gas reservoir states. Thus, forecasting production from unexploited wells and predicting the exact location of the sweet spot under complex geological conditions have become challenging topic for both academia and industry. According to the first law of geography, shale gas wells that are closer in space have more similar geologic features. Based on this foundation, a machine-learning prediction model based on spatial correlation (SC-MLPM) is proposed for evaluating potential production of shale gas wells in the Changning play located in Longmaxi Formation in the southern Sichuan basin, China. Specifically, an improved K-nearest neighbor algorithm (SC-KNN) based on the spatial correlation characteristics of the exploited wells is designed to estimate the relevant geological factors of the unexploited wells in the same area. In addition, an extreme gradient lifting model based on Huber loss function (Hu-XGB) is developed to predict the potential production of unexploited shale gas wells, and then the shale gas sweet spot area in the research area is predicted quickly and accurately. The experimental results on 88 shale gas wells from Changning play show that the mean relative error of the prediction results of the proposed method is 9.8%. Furthermore, the results also determine that the sweet spots of shale gas wells in the research area are mainly developed in the northwest and northeast directions, and gradually become worse in the southeast direction. Eventually, experimental results for the Fox Creek play in Canada show that the proposed model obtains better predictive performance as the number of gas wells increases, and also verifies the generalizability. This work provides a basis for the efficient development of the research area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
任世界灯火阑珊完成签到,获得积分10
刚刚
清秀的不言完成签到 ,获得积分10
2秒前
Biofly526发布了新的文献求助30
3秒前
小元发布了新的文献求助10
4秒前
范德萨范德萨关注了科研通微信公众号
4秒前
封似狮完成签到,获得积分10
4秒前
飞翔的梦发布了新的文献求助10
5秒前
芝芝完成签到,获得积分10
7秒前
1111完成签到,获得积分10
8秒前
keyanbaicai发布了新的文献求助10
11秒前
cui完成签到,获得积分10
12秒前
yanGGGGGG完成签到 ,获得积分20
12秒前
Biofly526完成签到,获得积分10
14秒前
情怀应助简单采纳,获得10
14秒前
豆子完成签到,获得积分10
15秒前
douzi完成签到,获得积分10
17秒前
和谐的如柏完成签到,获得积分10
17秒前
18秒前
18秒前
xing发布了新的文献求助10
18秒前
19秒前
19秒前
鲜艳的帅哥完成签到,获得积分10
20秒前
jing完成签到,获得积分10
20秒前
21秒前
keyanbaicai完成签到,获得积分10
22秒前
psj完成签到,获得积分10
22秒前
莫道桑榆完成签到,获得积分10
22秒前
he完成签到 ,获得积分10
23秒前
23秒前
苳苳完成签到 ,获得积分20
24秒前
Yangyang完成签到,获得积分10
25秒前
简单发布了新的文献求助10
25秒前
淡然冬灵发布了新的文献求助150
26秒前
陈小桥完成签到,获得积分10
27秒前
乐乐应助摇不滚摇滚采纳,获得10
28秒前
愉快的牛氓完成签到,获得积分10
29秒前
张杠杠完成签到 ,获得积分10
30秒前
吉以寒完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268