Comprehensive visual information acquisition for tomato picking robot based on multitask convolutional neural network

分割 人工智能 卷积神经网络 计算机科学 特征(语言学) 计算机视觉 模式识别(心理学) 目标检测 特征提取 哲学 语言学
作者
Xiaoqiang Du,Zhichao Meng,Zenghong Ma,Lijun Zhao,Wenwu Lu,Hongchao Cheng,Y. Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:238: 51-61 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.017
摘要

The tomato picking robot's vision system faces two difficult tasks: precise tomato pose acquisition and stem location. Tomato pose and stem location can help determine the end effector pose and achieve collision-free picking. To realise efficient crop picking, the tasks of target location, pose detection, and obstacle semantic segmentation should be completed in one model to obtain comprehensive visual information. Therefore, the multitask convolutional neural network YOLO-MCNN is proposed, a new method to complete the above tasks in one model. By fusing multi-scale features and determining the optimal locations for the semantic segmentation branch, four strategies are proposed for enhancing the segmentation ability. The experiment results show that fusing the semantic segmentation branch with the second layer of shallow feature maps and placing the branch after the 17th layer can result in the best segmentation performance. Fusing shallow feature maps improves small target detection while merging multi-scale feature maps enhances semantic segmentation performance. Moreover, ablation experiments are conducted to understand the influence between multitask convolutional and single task networks. It proves that running multiple tasks on the same backbone network does not affect their performance. The YOLO-MCNN's target detection performance F1 is 87.8%, the semantic segmentation performance mIoU is 74.8%, the keypoint detection performance dlmk is 6.95 pixels, the network size is 15.2 MB, and the inference speed is 19.9ms. Compared with other target detection and semantic segmentation networks, it shows that the comprehensive performance of the YOLO-MCNN is the best. The method provides theoretical foundation for constructing multitask convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gelinhao完成签到,获得积分10
刚刚
lsl应助唐泽雪穗采纳,获得40
1秒前
沉默的莞完成签到,获得积分10
2秒前
2秒前
晓豪发布了新的文献求助10
3秒前
全球完成签到,获得积分10
3秒前
xj_yjl完成签到,获得积分10
4秒前
文心同学完成签到,获得积分0
6秒前
赵赵完成签到 ,获得积分10
6秒前
8秒前
hahaha发布了新的文献求助10
8秒前
LUCKY完成签到 ,获得积分10
9秒前
caicai完成签到,获得积分10
9秒前
bkagyin应助PPD采纳,获得10
10秒前
orixero应助PPD采纳,获得10
10秒前
思源应助PPD采纳,获得10
10秒前
852应助PPD采纳,获得10
11秒前
JamesPei应助PPD采纳,获得10
11秒前
思源应助PPD采纳,获得10
11秒前
科研通AI5应助PPD采纳,获得10
11秒前
科研通AI6应助PPD采纳,获得10
11秒前
科研通AI5应助PPD采纳,获得10
11秒前
科研通AI5应助PPD采纳,获得10
11秒前
语恒完成签到,获得积分10
14秒前
槿曦完成签到 ,获得积分10
15秒前
长情的向真完成签到 ,获得积分10
15秒前
唐泽雪穗发布了新的文献求助40
16秒前
16秒前
不安的晓灵完成签到 ,获得积分10
17秒前
清修完成签到,获得积分10
18秒前
无敌科研大王完成签到,获得积分10
18秒前
赵怼怼完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助150
19秒前
阿凯完成签到 ,获得积分10
20秒前
kjw0708完成签到 ,获得积分10
20秒前
雷乾完成签到,获得积分10
21秒前
王志杰发布了新的文献求助10
21秒前
开心向真完成签到,获得积分10
21秒前
自来也完成签到,获得积分10
21秒前
ggbond完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066805
求助须知:如何正确求助?哪些是违规求助? 4288731
关于积分的说明 13360444
捐赠科研通 4108126
什么是DOI,文献DOI怎么找? 2249514
邀请新用户注册赠送积分活动 1254960
关于科研通互助平台的介绍 1187429