Comprehensive visual information acquisition for tomato picking robot based on multitask convolutional neural network

分割 人工智能 卷积神经网络 计算机科学 特征(语言学) 计算机视觉 模式识别(心理学) 目标检测 特征提取 哲学 语言学
作者
Xiaoqiang Du,Zhichao Meng,Zenghong Ma,Lijun Zhao,Wenwu Lu,Hongchao Cheng,Y. Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:238: 51-61 被引量:5
标识
DOI:10.1016/j.biosystemseng.2023.12.017
摘要

The tomato picking robot's vision system faces two difficult tasks: precise tomato pose acquisition and stem location. Tomato pose and stem location can help determine the end effector pose and achieve collision-free picking. To realise efficient crop picking, the tasks of target location, pose detection, and obstacle semantic segmentation should be completed in one model to obtain comprehensive visual information. Therefore, the multitask convolutional neural network YOLO-MCNN is proposed, a new method to complete the above tasks in one model. By fusing multi-scale features and determining the optimal locations for the semantic segmentation branch, four strategies are proposed for enhancing the segmentation ability. The experiment results show that fusing the semantic segmentation branch with the second layer of shallow feature maps and placing the branch after the 17th layer can result in the best segmentation performance. Fusing shallow feature maps improves small target detection while merging multi-scale feature maps enhances semantic segmentation performance. Moreover, ablation experiments are conducted to understand the influence between multitask convolutional and single task networks. It proves that running multiple tasks on the same backbone network does not affect their performance. The YOLO-MCNN's target detection performance F1 is 87.8%, the semantic segmentation performance mIoU is 74.8%, the keypoint detection performance dlmk is 6.95 pixels, the network size is 15.2 MB, and the inference speed is 19.9ms. Compared with other target detection and semantic segmentation networks, it shows that the comprehensive performance of the YOLO-MCNN is the best. The method provides theoretical foundation for constructing multitask convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李虎完成签到 ,获得积分10
刚刚
2秒前
风铃鸟发布了新的文献求助10
3秒前
华仔应助学习使我快乐1917采纳,获得10
3秒前
3秒前
3秒前
无尘完成签到 ,获得积分10
4秒前
liuxuiaologn完成签到,获得积分20
5秒前
害怕的鹏飞完成签到,获得积分10
5秒前
5秒前
高挑的向真完成签到,获得积分10
6秒前
czh12232319发布了新的文献求助10
6秒前
7秒前
7秒前
Alone离殇发布了新的文献求助10
7秒前
8秒前
只抽万宝路完成签到,获得积分20
10秒前
10秒前
10秒前
77发布了新的文献求助10
11秒前
我不李姐完成签到,获得积分10
13秒前
方方发布了新的文献求助10
13秒前
dinghaifeng应助无心的平蝶采纳,获得30
13秒前
英姑应助萍水相逢采纳,获得10
13秒前
ever完成签到,获得积分10
14秒前
风趣的靖雁完成签到 ,获得积分10
14秒前
柳如烟完成签到,获得积分10
15秒前
丘比特应助深情的雁露采纳,获得10
16秒前
qqqqq完成签到,获得积分10
16秒前
学习使我快乐1917完成签到,获得积分10
16秒前
16秒前
完美的妙芹完成签到,获得积分10
17秒前
17秒前
yibo完成签到,获得积分10
17秒前
17秒前
胡萝卜发布了新的文献求助10
18秒前
18秒前
今后应助JamesTYD采纳,获得10
19秒前
蓝色123完成签到,获得积分10
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003