高分子拥挤
纤维连接蛋白
细胞生物学
基质(化学分析)
细胞外基质
体外
组织培养
血管平滑肌
生物物理学
化学
生物化学
生物
高分子
平滑肌
内分泌学
色谱法
作者
Qing Liu,Jiang Liu,Xu-Heng Sun,Jian-Yi Xu,Cong Xu,Hongjing Jiang,Yu‐Chu Wu,Zhanyi Lin
出处
期刊:Tissue Engineering Part A
[Mary Ann Liebert, Inc.]
日期:2024-02-06
被引量:1
标识
DOI:10.1089/ten.tea.2023.0290
摘要
Successful in vitro culture of small-diameter tissue-engineered vascular grafts (TEVGs) requires rapid deposition of biomacromolecules secreted by vascular smooth muscle cells in a polyglycolic acid mesh scaffold's three-dimensional (3D) porous environment. However, common media have lower crowding conditions than in vivo tissue fluids. In addition, during the early stages of construction, most of the biomolecules secreted by the cells into the medium are lost, which negatively affects the TEVG culture process. In this study, we propose the use of macromolecular crowding (MMC) to enhance medium crowding to improve the deposition and self-assembly efficiency of major biomolecules in the early stages of TEVG culture. The addition of carrageenan significantly increased the degree of MMC in the culture medium without affecting cell viability, proliferation, and metabolic activity. Protein analysis demonstrated that the deposition of collagen types I and III and fibronectin increased significantly in the cell layers of two-dimensional and 3D smooth muscle cell cultures after the addition of a MMC agent. Collagen type I in the culture medium decreased significantly compared with that in the medium without a MMC agent. Scanning electron microscopy demonstrated that MMC agents considerably enhanced the formation of matrix protein structures during the early stages of 3D culture. Hence, MMC modifies the crowding degree of the culture medium, resulting in the rapid formation of numerous matrix proteins and fiber structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI