已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

New Class of Discrete-Time Memristor Circuits: First Integrals, Coexisting Attractors and Bifurcations Without Parameters

记忆电阻器 吸引子 班级(哲学) 数学 离散时间和连续时间 电子线路 统计物理学 拓扑(电路) 控制理论(社会学) 数学分析 计算机科学 物理 组合数学 人工智能 控制(管理) 统计 量子力学
作者
Mauro Di Marco,Mauro Forti,Luca Pancioni,A. Tesi
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:34 (01)
标识
DOI:10.1142/s0218127424500019
摘要

The use of ideal memristors in a continuous-time (CT) nonlinear circuit is known to greatly enrich the dynamic behavior with respect to the memristorless counterpart, which is a crucial property for applications in future analog electronic circuits. This can be explained via the flux–charge analysis method (FCAM), according to which CT circuits with ideal memristors have for structural reasons first integrals (or invariants of motion, or conserved quantities) and their state space can be foliated in infinitely many invariant manifolds where they can display different dynamics. The paper introduces a new discretization scheme for the memristor which, differently from those adopted in the literature, guarantees that the first integrals of the CT memristor circuits are preserved exactly in the discretization, and that this is true for any step size. This new scheme makes it possible to extend FCAM to discrete-time (DT) memristor circuits and rigorously show the existence of invariant manifolds and infinitely many coexisting attractors (extreme multistability). Moreover, the paper addresses standard bifurcations varying the discretization step size and also bifurcations without parameters, i.e. bifurcations due to varying the initial conditions for fixed step size and circuit parameters. The method is illustrated by analyzing the dynamics and flip bifurcations with and without parameters in a DT memristor–capacitor circuit and the Poincaré–Andronov–Hopf bifurcation in a DT Murali–Lakshmanan–Chua circuit with a memristor. Simulations are also provided to illustrate bifurcations in a higher-order DT memristor Chua’s circuit. The results in the paper show that DT memristor circuits obtained with the proposed discretization scheme are able to display even richer dynamics and bifurcations than their CT counterparts, due to the coexistence of infinitely many attractors and the possibility to use the discretization step as a parameter without destroying the foliation in invariant manifolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo发布了新的文献求助10
1秒前
1秒前
小毛发布了新的文献求助10
1秒前
2秒前
somin应助reedleaf采纳,获得10
3秒前
ss发布了新的文献求助10
4秒前
9秒前
小居居完成签到,获得积分10
11秒前
11秒前
袅袅关注了科研通微信公众号
11秒前
dong应助飞云之下采纳,获得10
12秒前
14秒前
16秒前
义气芷蝶完成签到 ,获得积分10
17秒前
19秒前
达布溜发布了新的文献求助10
24秒前
25秒前
27秒前
几两发布了新的文献求助10
27秒前
fsznc1完成签到 ,获得积分0
27秒前
9464完成签到 ,获得积分10
29秒前
zhou发布了新的文献求助10
29秒前
袅袅发布了新的文献求助10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
柯一一应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
32秒前
柯一一应助科研通管家采纳,获得10
32秒前
32秒前
33秒前
李爱国应助科研通管家采纳,获得10
33秒前
zhou完成签到,获得积分10
34秒前
34秒前
研友_nqrKQZ完成签到,获得积分10
34秒前
疯狂的胡萝卜应助DrQin采纳,获得10
34秒前
领导范儿应助Akihi采纳,获得10
36秒前
紫葡萄发布了新的文献求助10
41秒前
落雨声完成签到 ,获得积分10
41秒前
xiongqi完成签到 ,获得积分10
43秒前
松间蓝雾发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021