Optimization of the SOC-based multi-stage constant current charging strategy using coyote optimization algorithm

荷电状态 粒子群优化 电流(流体) 航程(航空) 电池(电) 恒流 算法 数学优化 计算机科学 数学 工程类 电气工程 功率(物理) 量子力学 物理 航空航天工程
作者
Qiuyuan Huang,Yihua Liu,Guan‐Jhu Chen,Yi‐Feng Luo,Chunliang Liu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:77: 109867-109867
标识
DOI:10.1016/j.est.2023.109867
摘要

This study presents a new strategy which optimizes the multi-stage constant current (MSCC) charging algorithm with state-of-charge (SOC)-based transition conditions (MSCCSOC) by searching for the optimal values of transition state-of-charge (SOC) and charging currents using the coyote optimization algorithm (COA). The paper firstly uses the electrochemical impedance spectroscopy (EIS) analysis to construct the equivalent circuit model (ECM) of the lithium-ion battery, and particle swarm optimization (PSO) is utilized to determine the parameters of the battery ECM within each 1 % SOC. The study employs the COA for the first time to tackle the challenging multi-objective MSCC optimization problem, which involves nine parameters. By not relying on multiple charging experiments and not restricting the search range of SOC transition and charging current values, the proposed approach can identify the global optimal solution, thus being advantageous over existing methods. The proposed method considers both shortening the charging time and reducing the charging losses. The experimental results show that compared with the traditional 1C CC-CV charging method, the proposed strategy can improve the average temperature rise, charging time, and maximum temperature rise by 17.6 %, 34.0 %, and 26.0 %, respectively. Furthermore, the proposed method outperforms other state-of-the-art MSCC charging algorithms and optimization techniques with limited searching range. Therefore, the proposed strategy provides a promising solution for obtaining the optimal setting for MSCCSOC, which can lead to reduced charging time and charging losses, thereby improving the battery's performance and lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gudujian870928完成签到,获得积分10
刚刚
1秒前
SYLH应助李2003采纳,获得10
2秒前
rookieLi应助boshi采纳,获得10
2秒前
Ula发布了新的文献求助10
2秒前
方方完成签到,获得积分10
2秒前
Ava应助llj采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
平常的狗应助林士采纳,获得10
4秒前
4秒前
芝麻完成签到,获得积分10
4秒前
小兵发布了新的文献求助10
4秒前
5秒前
5秒前
balabala发布了新的文献求助10
5秒前
5秒前
091完成签到 ,获得积分10
5秒前
苹果蜗牛发布了新的文献求助10
6秒前
科研小垃圾完成签到,获得积分10
6秒前
8秒前
8秒前
皮划艇完成签到,获得积分20
8秒前
8秒前
酷波er应助苹果采纳,获得10
8秒前
方方发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助你可真行采纳,获得10
10秒前
花花发布了新的文献求助10
10秒前
SYLH应助XFaning采纳,获得10
10秒前
Lucas应助芝麻采纳,获得10
11秒前
苗条的凝雁完成签到,获得积分10
11秒前
小樊同学发布了新的文献求助10
11秒前
yihuifa完成签到 ,获得积分10
11秒前
爱思考的小笨笨完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
乐乐乐发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650