DeepWalk-aware graph attention networks with CNN for circRNA–drug sensitivity association identification

计算机科学 图形 图嵌入 药物重新定位 人工智能 注意力网络 特征(语言学) 机器学习 特征学习 灵敏度(控制系统) 嵌入 计算生物学 药品 理论计算机科学 生物 工程类 药理学 语言学 哲学 电子工程
作者
Guanghui Li,Youjun Li,Cheng Liang,Jiawei Luo
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:2
标识
DOI:10.1093/bfgp/elad053
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA–drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA–drug sensitivity associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助高贵一德采纳,获得10
1秒前
1秒前
2秒前
李小小完成签到,获得积分10
2秒前
如是之人发布了新的文献求助10
2秒前
如是之人发布了新的文献求助10
2秒前
sun完成签到,获得积分10
2秒前
2秒前
2秒前
夏天发布了新的文献求助10
2秒前
力颗咪发布了新的文献求助10
3秒前
3秒前
如是之人发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
Hwchaodoctor完成签到,获得积分10
3秒前
田様应助vince采纳,获得10
3秒前
3秒前
如是之人发布了新的文献求助10
3秒前
如是之人发布了新的文献求助10
3秒前
如是之人发布了新的文献求助10
4秒前
如是之人发布了新的文献求助10
4秒前
4秒前
luckyyhy发布了新的文献求助10
4秒前
4秒前
风雅发布了新的文献求助10
4秒前
传奇3应助一方通行采纳,获得10
4秒前
4秒前
5秒前
羊六七发布了新的文献求助20
5秒前
cr123发布了新的文献求助10
5秒前
杜瑞豪完成签到,获得积分10
5秒前
在水一方应助英勇映波采纳,获得10
6秒前
无限的千琴完成签到,获得积分10
6秒前
shan完成签到,获得积分20
6秒前
昌升完成签到,获得积分20
6秒前
易大师完成签到,获得积分10
6秒前
自由迎曼发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688