DeepWalk-aware graph attention networks with CNN for circRNA–drug sensitivity association identification

计算机科学 图形 图嵌入 药物重新定位 人工智能 注意力网络 特征(语言学) 机器学习 特征学习 灵敏度(控制系统) 嵌入 计算生物学 药品 理论计算机科学 生物 工程类 药理学 语言学 哲学 电子工程
作者
Guanghui Li,Youjun Li,Cheng Liang,Jiawei Luo
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:2
标识
DOI:10.1093/bfgp/elad053
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA–drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA–drug sensitivity associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北风发布了新的文献求助10
刚刚
研团子发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
2秒前
希望天下0贩的0应助华琪采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
十七完成签到 ,获得积分10
4秒前
大方岩发布了新的文献求助10
5秒前
5秒前
情怀应助柠檬采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
曼荷菠萝发布了新的文献求助10
7秒前
李健应助ZZ采纳,获得10
7秒前
yang发布了新的文献求助10
7秒前
白白白发布了新的文献求助10
7秒前
小李同学发布了新的文献求助30
8秒前
蓝蓝蓝发布了新的文献求助10
8秒前
8秒前
阿巴阿巴发布了新的文献求助10
8秒前
初空月儿发布了新的文献求助10
9秒前
9秒前
lvzhihao发布了新的文献求助10
9秒前
9秒前
赵清持完成签到,获得积分10
9秒前
李爱国应助阳光的涵菡采纳,获得10
11秒前
For完成签到,获得积分20
11秒前
体贴明辉发布了新的文献求助10
12秒前
12秒前
华仔应助兮兮兮兮兮兮采纳,获得10
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794