亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepWalk-aware graph attention networks with CNN for circRNA–drug sensitivity association identification

计算机科学 图形 图嵌入 药物重新定位 人工智能 注意力网络 特征(语言学) 机器学习 特征学习 灵敏度(控制系统) 嵌入 计算生物学 药品 理论计算机科学 生物 工程类 药理学 语言学 哲学 电子工程
作者
Guanghui Li,Youjun Li,Cheng Liang,Jiawei Luo
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:2
标识
DOI:10.1093/bfgp/elad053
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA–drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA–drug sensitivity associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的紫菜完成签到 ,获得积分10
刚刚
殷楷霖发布了新的文献求助10
2秒前
852应助小圭采纳,获得30
16秒前
幽默的书本完成签到 ,获得积分10
23秒前
llyyzzl应助嗒嗒小医生采纳,获得20
25秒前
水牛完成签到,获得积分10
29秒前
30秒前
张帅奔完成签到,获得积分10
30秒前
彭于晏应助Potato采纳,获得10
32秒前
小圭发布了新的文献求助30
34秒前
35秒前
李健应助Ahan采纳,获得10
36秒前
端庄千青发布了新的文献求助10
36秒前
syalonyui完成签到,获得积分10
36秒前
36秒前
饭团不吃鱼完成签到,获得积分10
36秒前
nazhang发布了新的文献求助10
41秒前
李爱国应助端庄千青采纳,获得10
42秒前
赘婿应助无奈母鸡采纳,获得10
47秒前
科研通AI6应助殷楷霖采纳,获得10
48秒前
天天快乐应助nazhang采纳,获得10
59秒前
59秒前
木齐Jay完成签到,获得积分10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
汉堡包应助吱吱吱吱采纳,获得10
1分钟前
lyfsci完成签到,获得积分10
1分钟前
高挑的白旋风完成签到,获得积分10
1分钟前
鲤鱼笑南完成签到,获得积分10
1分钟前
Green完成签到,获得积分10
1分钟前
6666完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
冷酷哈密瓜完成签到,获得积分10
1分钟前
科研帽发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644480
求助须知:如何正确求助?哪些是违规求助? 4764238
关于积分的说明 15025149
捐赠科研通 4802869
什么是DOI,文献DOI怎么找? 2567659
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484792