DeepWalk-aware graph attention networks with CNN for circRNA–drug sensitivity association identification

计算机科学 图形 图嵌入 药物重新定位 人工智能 注意力网络 特征(语言学) 机器学习 特征学习 灵敏度(控制系统) 嵌入 计算生物学 药品 理论计算机科学 生物 工程类 药理学 语言学 哲学 电子工程
作者
Guanghui Li,Youjun Li,Cheng Liang,Jiawei Luo
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:2
标识
DOI:10.1093/bfgp/elad053
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA–drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA–drug sensitivity associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuhuhu发布了新的文献求助10
刚刚
若空行走发布了新的文献求助20
刚刚
1秒前
灰灰完成签到,获得积分10
1秒前
ding应助xun采纳,获得10
1秒前
HarUkii发布了新的文献求助10
1秒前
田様应助terryok采纳,获得30
1秒前
victor完成签到,获得积分10
1秒前
科研通AI5应助Romme采纳,获得30
2秒前
乐乐应助积极山雁采纳,获得10
3秒前
3秒前
安123完成签到,获得积分10
4秒前
KYT关闭了KYT文献求助
5秒前
无语发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
9秒前
9秒前
风趣采白发布了新的文献求助10
9秒前
11秒前
11秒前
terryok发布了新的文献求助30
12秒前
13秒前
yutang发布了新的文献求助10
14秒前
JYT发布了新的文献求助50
14秒前
研友_VZG7GZ应助Sophiaye采纳,获得10
14秒前
14秒前
科研通AI6应助yxy采纳,获得10
14秒前
领导范儿应助清脆的夜白采纳,获得10
15秒前
馆长应助Rita采纳,获得30
15秒前
爱听歌的寄云完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
积极山雁发布了新的文献求助10
18秒前
虚心的颜发布了新的文献求助10
18秒前
Lucas应助灰灰采纳,获得10
19秒前
NexusExplorer应助buerxiaoshen采纳,获得10
19秒前
科研通AI6应助搞怪隶采纳,获得10
20秒前
lyyyy发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907686
求助须知:如何正确求助?哪些是违规求助? 4184596
关于积分的说明 12994737
捐赠科研通 3951119
什么是DOI,文献DOI怎么找? 2166819
邀请新用户注册赠送积分活动 1185410
关于科研通互助平台的介绍 1091841