DeepWalk-aware graph attention networks with CNN for circRNA–drug sensitivity association identification

计算机科学 图形 图嵌入 药物重新定位 人工智能 注意力网络 特征(语言学) 机器学习 特征学习 灵敏度(控制系统) 嵌入 计算生物学 药品 理论计算机科学 生物 工程类 药理学 语言学 哲学 电子工程
作者
Guanghui Li,Youjun Li,Cheng Liang,Jiawei Luo
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:2
标识
DOI:10.1093/bfgp/elad053
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA–drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA–drug sensitivity associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
乌哩咕噜发布了新的文献求助10
3秒前
iuhgnor完成签到,获得积分10
3秒前
沙糖桔完成签到,获得积分10
3秒前
蓝莓味蛋挞完成签到,获得积分10
4秒前
DiJia发布了新的文献求助10
5秒前
6秒前
科研通AI6应助大意的豌豆采纳,获得10
7秒前
FrankJeffison完成签到,获得积分20
7秒前
8秒前
8秒前
9秒前
10秒前
doctorshg发布了新的文献求助10
10秒前
丘比特应助KSLC采纳,获得10
11秒前
focco完成签到,获得积分10
11秒前
搞怪的雪巧完成签到,获得积分20
11秒前
小满完成签到 ,获得积分10
11秒前
12秒前
清清清完成签到 ,获得积分10
12秒前
hwei发布了新的文献求助10
12秒前
梓里楠木发布了新的文献求助10
12秒前
ww发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
心静听炊烟完成签到 ,获得积分10
15秒前
15秒前
16秒前
mate完成签到,获得积分10
16秒前
金志铭关注了科研通微信公众号
16秒前
中原第一深情完成签到,获得积分10
18秒前
我是老大应助MM采纳,获得10
18秒前
SciGPT应助雨碎寒江采纳,获得10
18秒前
orangel发布了新的文献求助10
18秒前
18秒前
zzz发布了新的文献求助10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226371
求助须知:如何正确求助?哪些是违规求助? 4397864
关于积分的说明 13687648
捐赠科研通 4262400
什么是DOI,文献DOI怎么找? 2339124
邀请新用户注册赠送积分活动 1336484
关于科研通互助平台的介绍 1292517