红树林
栖息地
环境科学
土地复垦
地理
濒危物种
全球变暖
气候变化
蓝炭
生态学
渔业
海草
考古
生物
作者
Jingyu Zeng,Bin Ai,Zhuokai Jian,Jun Zhao,Shaojie Sun
标识
DOI:10.1016/j.jenvman.2023.119678
摘要
Climate change has resulted in great influence on the geographical distribution of species. Mangrove forests are one of the most precious ecosystems on the planet, yet they are being threatened by the habitat destruction and degradation under the situation of global warming. Seeking suitable areas for planting mangroves to tackle climate change has been gradually popular in ecological restoration. In this study, we applied the Maximum Entropy algorithm to assess the contribution of environmental factors on mangrove distribution, simulated mangrove suitable habitat for present and future (scenario of SSP245-2070s), and used kernel density analysis for identifying priority of mangrove reserve construction. Results indicate that mean diurnal range and elevation made the highest contribution on mangrove distribution. At present, the mangrove habitat suitability along the western coast of the Guangdong-Hong Kong-Macao Area (GHMA) was the highest while that along the eastern coast was the lowest. By 2070s, mangrove suitable areas would show a decreasing trend under SSP245 scenario. High suitable areas (HSAs) would change fastest and shift to northeast in the same direction as dominant environmental factors. For further mangrove restoration, it is advisable to select sites with high suitability density in the future but low reclamation density at present as prior mangrove reserves, and these sites distribute along the northeastern and northwestern coast of Zhanjiang, Yangjiang and Jiangmen, the Pearl River Estuary and Honghai Bay of Shanwei. Meanwhile, regions with lower suitability density but higher reclamation density could be listed as secondary mangrove reserves.
科研通智能强力驱动
Strongly Powered by AbleSci AI