Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIJIngcan完成签到 ,获得积分10
刚刚
ZM完成签到,获得积分10
刚刚
2秒前
2秒前
xiaole发布了新的文献求助10
2秒前
玩命的平蓝完成签到,获得积分10
3秒前
3秒前
4秒前
asdfgh完成签到,获得积分10
5秒前
阔达月亮发布了新的文献求助10
6秒前
鳗鱼不尤完成签到,获得积分10
7秒前
urologistwzy应助nn采纳,获得20
8秒前
tinatian270完成签到,获得积分10
9秒前
asdfgh发布了新的文献求助10
9秒前
蟪蛄鸪发布了新的文献求助10
9秒前
xxxx完成签到,获得积分10
9秒前
chujun_cai完成签到 ,获得积分10
9秒前
hustscholar完成签到,获得积分10
10秒前
liuchang完成签到 ,获得积分10
10秒前
qinyuynip发布了新的文献求助10
10秒前
怎么会睡不醒完成签到 ,获得积分10
10秒前
11秒前
haoyunlai完成签到,获得积分10
11秒前
现代宝宝完成签到,获得积分10
11秒前
星辰大海应助爱听歌的沁采纳,获得10
11秒前
木子完成签到 ,获得积分10
11秒前
那儿完成签到,获得积分10
11秒前
Pursue完成签到 ,获得积分10
12秒前
载尘完成签到 ,获得积分10
12秒前
Rex完成签到,获得积分10
13秒前
TingWang完成签到,获得积分10
13秒前
刘刘完成签到 ,获得积分10
14秒前
玉宇琼楼完成签到 ,获得积分10
14秒前
大模型应助1234sxcv采纳,获得10
15秒前
MchemG应助ho采纳,获得30
15秒前
Zero完成签到,获得积分10
16秒前
17秒前
苗条世德完成签到,获得积分10
18秒前
Rita完成签到,获得积分10
18秒前
叶y发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325860
求助须知:如何正确求助?哪些是违规求助? 4466190
关于积分的说明 13895622
捐赠科研通 4358576
什么是DOI,文献DOI怎么找? 2394125
邀请新用户注册赠送积分活动 1387563
关于科研通互助平台的介绍 1358521