Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈佳发布了新的文献求助30
刚刚
tfli发布了新的文献求助10
1秒前
2秒前
wkjfh举报zw求助涉嫌违规
3秒前
浮游应助wuang采纳,获得10
3秒前
huangjixiang发布了新的文献求助10
3秒前
4秒前
五香完成签到 ,获得积分10
5秒前
6秒前
hahahahaha发布了新的文献求助10
6秒前
lllll发布了新的文献求助10
7秒前
西子阳完成签到,获得积分10
8秒前
TT完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
辰小七发布了新的文献求助10
9秒前
科研通AI2S应助isyfear采纳,获得10
9秒前
舍予发布了新的文献求助10
9秒前
12秒前
虚幻远侵发布了新的文献求助10
12秒前
赘婿应助雨rain采纳,获得30
13秒前
十八发布了新的文献求助10
13秒前
季思锐完成签到,获得积分10
14秒前
BGa发布了新的文献求助30
16秒前
ding应助独特仙人掌采纳,获得10
17秒前
虎啊虎啊完成签到,获得积分10
17秒前
雪上一枝蒿完成签到,获得积分10
18秒前
alien完成签到,获得积分10
18秒前
hahahahaha完成签到,获得积分10
18秒前
tachang完成签到,获得积分10
18秒前
kky完成签到 ,获得积分10
19秒前
超神关注了科研通微信公众号
20秒前
我是老大应助美丽的若云采纳,获得10
21秒前
霁星河完成签到,获得积分10
21秒前
21秒前
22秒前
Chandler完成签到,获得积分10
22秒前
成熟稳重痴情完成签到,获得积分10
24秒前
大个应助HEIKU采纳,获得50
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310429
求助须知:如何正确求助?哪些是违规求助? 4454656
关于积分的说明 13860861
捐赠科研通 4342772
什么是DOI,文献DOI怎么找? 2384790
邀请新用户注册赠送积分活动 1379234
关于科研通互助平台的介绍 1347528