Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅莞完成签到,获得积分0
3秒前
谦让的含海完成签到,获得积分10
3秒前
辛勤的囧完成签到,获得积分10
15秒前
MC123完成签到,获得积分10
16秒前
wsafhgfjb完成签到,获得积分10
17秒前
20秒前
黄启烽完成签到,获得积分10
28秒前
文献属于所有科研人关注了科研通微信公众号
33秒前
啦啦啦啦啦完成签到,获得积分10
34秒前
36秒前
凌泉完成签到 ,获得积分10
37秒前
别有乾坤完成签到 ,获得积分10
37秒前
qaplay完成签到 ,获得积分0
38秒前
阿然完成签到,获得积分10
41秒前
天晴完成签到,获得积分10
44秒前
是真的完成签到 ,获得积分10
47秒前
yanmh完成签到,获得积分10
48秒前
kmzzy完成签到 ,获得积分10
53秒前
大汤圆圆完成签到 ,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
嗡嗡完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
活泼的南风完成签到,获得积分10
1分钟前
ZSZ完成签到,获得积分10
1分钟前
wei发布了新的文献求助10
1分钟前
是三石啊完成签到 ,获得积分10
1分钟前
xhsz1111完成签到 ,获得积分10
1分钟前
sweet完成签到 ,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
zz321完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
共享精神应助wei采纳,获得10
1分钟前
万能图书馆应助lzy303886采纳,获得10
1分钟前
星辉的斑斓完成签到 ,获得积分10
1分钟前
SerCheung完成签到,获得积分10
1分钟前
Brave发布了新的文献求助10
1分钟前
zhongxia完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136