Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thien发布了新的文献求助30
1秒前
焚天尘殇发布了新的文献求助10
1秒前
1秒前
上官老黑完成签到 ,获得积分10
1秒前
开心果发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
3秒前
Ava应助李婷婷采纳,获得10
4秒前
8R60d8完成签到,获得积分0
5秒前
zyl发布了新的文献求助10
5秒前
杨涛发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
式微给式微的求助进行了留言
6秒前
7秒前
jerry发布了新的文献求助10
7秒前
8秒前
王哪跑12发布了新的文献求助10
8秒前
古铜完成签到 ,获得积分10
9秒前
彭佳丽完成签到,获得积分10
9秒前
LING完成签到 ,获得积分10
9秒前
帅气剑通完成签到,获得积分10
10秒前
11秒前
尊敬的丹烟完成签到,获得积分10
12秒前
damonvincent发布了新的文献求助10
13秒前
郭嘉仪发布了新的文献求助10
13秒前
打打应助zyl采纳,获得10
15秒前
cardiology发布了新的文献求助10
16秒前
16秒前
jerry完成签到,获得积分10
16秒前
Orange应助jos采纳,获得10
17秒前
充电宝应助尊敬的丹烟采纳,获得10
17秒前
酷波er应助向日葵采纳,获得10
18秒前
星辰大海应助damonvincent采纳,获得10
19秒前
领导范儿应助落阳采纳,获得10
19秒前
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990904
求助须知:如何正确求助?哪些是违规求助? 4239640
关于积分的说明 13207664
捐赠科研通 4034323
什么是DOI,文献DOI怎么找? 2207244
邀请新用户注册赠送积分活动 1218305
关于科研通互助平台的介绍 1136629