Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助77采纳,获得10
2秒前
昭昭完成签到 ,获得积分10
2秒前
wsq完成签到,获得积分10
2秒前
小二郎应助renrunxue采纳,获得10
3秒前
orchid发布了新的文献求助30
3秒前
4秒前
ccchengzi完成签到,获得积分10
8秒前
聂青枫完成签到,获得积分10
8秒前
阳光大有发布了新的文献求助10
9秒前
木木三完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
柒月完成签到,获得积分20
13秒前
13秒前
renrunxue完成签到,获得积分20
14秒前
bxj发布了新的文献求助20
14秒前
15秒前
木木三发布了新的文献求助10
16秒前
renrunxue发布了新的文献求助10
17秒前
科目三应助Andy采纳,获得30
19秒前
Vito发布了新的文献求助10
19秒前
20秒前
22秒前
22秒前
科研通AI6应助nikuisi采纳,获得10
22秒前
陈有游发布了新的文献求助10
24秒前
25秒前
龙慧琳发布了新的文献求助10
27秒前
FashionBoy应助尽快毕业采纳,获得10
27秒前
生动画笔完成签到,获得积分20
27秒前
晴天完成签到,获得积分10
28秒前
格瑞格完成签到,获得积分10
28秒前
浮游应助猕猴桃采纳,获得10
28秒前
29秒前
量子星尘发布了新的文献求助30
31秒前
wjx发布了新的文献求助30
33秒前
33秒前
懒得理发布了新的文献求助10
34秒前
大郎发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156284
求助须知:如何正确求助?哪些是违规求助? 4351817
关于积分的说明 13550182
捐赠科研通 4194927
什么是DOI,文献DOI怎么找? 2300757
邀请新用户注册赠送积分活动 1300699
关于科研通互助平台的介绍 1245750