已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Metrol_Wang采纳,获得10
1秒前
Akim应助羁鸟采纳,获得10
3秒前
ycwang完成签到,获得积分10
4秒前
冷酷哈密瓜完成签到,获得积分10
7秒前
啧啧发布了新的文献求助100
8秒前
垣味栗子酱完成签到,获得积分10
9秒前
爱听歌长颈鹿完成签到,获得积分10
10秒前
山猪吃细糠完成签到 ,获得积分10
10秒前
xiaolang2004完成签到,获得积分10
11秒前
11秒前
14秒前
哭泣的若翠完成签到,获得积分10
14秒前
Moment完成签到 ,获得积分10
15秒前
18秒前
无风发布了新的文献求助10
21秒前
OsActin发布了新的文献求助10
21秒前
leoskrrr完成签到,获得积分10
23秒前
tu完成签到 ,获得积分10
24秒前
啧啧完成签到,获得积分10
30秒前
1chen完成签到 ,获得积分10
33秒前
33秒前
34秒前
CooL完成签到 ,获得积分10
35秒前
安渝完成签到 ,获得积分10
36秒前
123完成签到 ,获得积分10
37秒前
40秒前
41秒前
zzzz发布了新的文献求助10
44秒前
45秒前
姆姆没买完成签到 ,获得积分10
45秒前
46秒前
陆aa完成签到 ,获得积分10
47秒前
小天完成签到,获得积分10
48秒前
111完成签到 ,获得积分10
49秒前
Metrol_Wang发布了新的文献求助10
50秒前
CodeCraft应助魁梧的傲芙采纳,获得10
50秒前
羁鸟发布了新的文献求助10
50秒前
精明黄蜂完成签到 ,获得积分10
51秒前
佳佳发布了新的文献求助10
52秒前
小马甲应助zzzz采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290873
求助须知:如何正确求助?哪些是违规求助? 4442088
关于积分的说明 13829259
捐赠科研通 4324915
什么是DOI,文献DOI怎么找? 2373887
邀请新用户注册赠送积分活动 1369281
关于科研通互助平台的介绍 1333356