Advanced hyperparameter optimization of deep learning models for wind power prediction

超参数 超参数优化 计算机科学 均方误差 人工智能 机器学习 估计员 人工神经网络 卷积神经网络 风力发电 随机森林 深度学习 支持向量机 统计 数学 工程类 电气工程
作者
Shahram Hanifi,Andrea Cammarono,Hossein Zare‐Behtash
出处
期刊:Renewable Energy [Elsevier]
卷期号:221: 119700-119700 被引量:24
标识
DOI:10.1016/j.renene.2023.119700
摘要

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods such as grid search or random search are time-consuming, computationally expensive, and unreliable for complex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimisation of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, has not been systematically explored in existing literature. The impact of these optimisation techniques on the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error (RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that while for the CNN model all the optimisation methods achieve similar performances, the LSTM model optimised by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, for the first time in this research, the impact of the random initialization features on the performance of the forecasting models with neural networks is investigated. The proposed structures for deep learning models were examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers to tune the time series-based forecasting models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan发布了新的文献求助30
刚刚
张道微发布了新的文献求助10
1秒前
夹竹桃发布了新的文献求助10
2秒前
时尚的秋天完成签到 ,获得积分10
3秒前
小白完成签到 ,获得积分10
4秒前
合适的龙猫关注了科研通微信公众号
4秒前
hh发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
萝卜卜完成签到,获得积分10
5秒前
5秒前
啾咪蜜完成签到,获得积分10
6秒前
HandsomeBoy完成签到 ,获得积分10
6秒前
sun完成签到,获得积分10
7秒前
7秒前
Jasper应助刘星宇采纳,获得30
8秒前
hooh完成签到,获得积分10
8秒前
ding应助YOUNG采纳,获得10
8秒前
小二郎应助称心的蛟凤采纳,获得10
9秒前
ZZyy完成签到 ,获得积分10
9秒前
my完成签到,获得积分10
10秒前
爱吃香菜完成签到 ,获得积分20
11秒前
咕噜咕噜发布了新的文献求助10
11秒前
askaga完成签到,获得积分10
11秒前
万能图书馆应助勿扰采纳,获得10
11秒前
12秒前
UKU发布了新的文献求助10
12秒前
Yly发布了新的文献求助10
13秒前
14秒前
充电宝应助PhD-SCAU采纳,获得10
15秒前
chen完成签到 ,获得积分10
16秒前
16秒前
蟹黄堡bro完成签到,获得积分10
17秒前
wang发布了新的文献求助30
17秒前
迷路的雅霜完成签到,获得积分10
18秒前
18秒前
科研通AI6应助JJJJJJJJJJJ采纳,获得10
18秒前
丘比特应助飘逸的太阳采纳,获得10
18秒前
MAFAKETHS发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851