吸附
掺杂剂
化学工程
材料科学
铁磁性
选择性
钙钛矿(结构)
螯合作用
兴奋剂
密度泛函理论
氧气
无机化学
纳米技术
化学
催化作用
有机化学
计算化学
光电子学
物理
量子力学
工程类
作者
Ming Zhou,Xiao Ma,Cuiyue Ji,Lekai Zhao,Jiahao Chen,Yongdong Shi,Delong Liu,Zhaoxiang Zhong,Ze‐Xian Low,Weihong Xing
标识
DOI:10.1016/j.cej.2023.147600
摘要
Creating adsorbents that exhibit high selectivity towards pollutants, can be readily regenerated, and maintain high stability, remains a crucial challenge in water treatment technology. Herein, we present a magnetically and chemically recoverable absorbent based on Ti and Co co-substituted LaFeO3 (La0.9Fe0.55Ti0.3Co0.15O3, LFTCO) with significantly enhanced adsorption properties. Notably, LFTCO exhibits a methyl blue adsorption capacity (qmax) of 2131 mg/g, setting a new record among perovskite oxides, due to the increased surface oxygen vacancy with the dual doping strategy. The selected dual-dopant consists of Fenton active Co and spin-state interactive Ti, which allows creating more oxygen vacancy and simultaneously facilitating pragmatic regeneration of the adsorbent. The new LFTCO exhibits significantly enhanced ferromagnetism (M = 7.27 emu/g), enabling rapid magnetic separation from water and subsequent Fenton-based regeneration step. We also reveal that the anchored configuration of SO3-defect site, through density functional theory (DFT) calculation, as the most favorable site for the adsorption process. These findings provide a pathway to creating high-performance adsorbents and shed light on the mechanistic understanding of LFTCO's enhanced adsorption properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI