A 2D-CNN-Based Two-Stage Structural Damage Localization and Quantification Technique Using Time Domain Vibration Data

计算机科学 结构健康监测 卷积神经网络 帧(网络) 流离失所(心理学) 噪音(视频) 人工智能 时域 振动 加速度 模式识别(心理学) 结构工程 计算机视觉 工程类 图像(数学) 经典力学 电信 心理学 物理 量子力学 心理治疗师
作者
T. K. Das,Shyamal Guchhait
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:24 (20) 被引量:2
标识
DOI:10.1142/s0219455424502328
摘要

The conventional approaches for detecting structural degradation are time-consuming, labor-intensive, and costly. The physical monitoring of the structure also poses risks to the health and safety of supervisors. Therefore, damage estimation of any structure using artificial intelligence (AI), more specifically deep learning (DL), is becoming more significant in civil infrastructure. In the presented research article, an efficient two-stage damage detection method is proposed for structural damage detection (SDD) from time domain vibration signals. The proposed method utilizes two-dimensional convolutional neural network (2D-CNN) architecture as a DL algorithm for damage detection. Here, a computer-aided damage detection method for steel beam and frame-type structures is developed using 2D-CNN algorithm in the Google Colab platform. The effectiveness of the proposed method is first verified, and it provides more than 90% accuracy for identifying the damage location and severity of a cantilever beam for single- and multi-damage scenarios from numerically simulated noisy displacement data. The algorithm is also experimentally validated through the raw acceleration data of damaged steel frame joints collected from the Qatar University Grandstand simulator (QUGS). The proposed 2D-CNN algorithm performs better than other DL algorithms by achieving 100% accuracy within 10 epochs for damage detection of steel frames using QUGS data. It demonstrates significant potential for detecting damage location and quantifying damages for single- and multi-damage scenarios using noise-free and noisy datasets. The primary contribution of this study resides in the implementation of two-stage damage detection algorithm utilizing 2D-CNN with time domain vibration response for multiclass damage identification and quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助文小杰采纳,获得10
1秒前
1秒前
998877剑指发布了新的文献求助10
1秒前
斯文败类应助斯文明杰采纳,获得10
2秒前
xy完成签到 ,获得积分10
2秒前
3秒前
wyc完成签到,获得积分20
5秒前
6秒前
keyantang完成签到,获得积分10
7秒前
桃桃子发布了新的文献求助10
7秒前
8秒前
张子扬发布了新的文献求助10
11秒前
啦啦啦完成签到,获得积分10
12秒前
桃桃子完成签到,获得积分10
13秒前
上官若男应助momo采纳,获得10
15秒前
16秒前
16秒前
橘朵方差完成签到,获得积分10
17秒前
CipherSage应助lala采纳,获得10
17秒前
raolixiang完成签到,获得积分10
19秒前
20秒前
HEIKU应助医路通行采纳,获得10
20秒前
小蘑菇应助Y123采纳,获得10
20秒前
我是老大应助李昕123采纳,获得10
22秒前
23秒前
积极彩虹完成签到,获得积分10
23秒前
清脆的乌冬面完成签到,获得积分10
25秒前
冻冻也完成签到,获得积分10
26秒前
26秒前
任性柜子完成签到 ,获得积分10
27秒前
27秒前
万能图书馆应助艾米尼采纳,获得20
27秒前
鹿三德完成签到,获得积分20
28秒前
lala完成签到,获得积分20
29秒前
29秒前
30秒前
sdhgd发布了新的文献求助100
30秒前
钱俊发布了新的文献求助10
32秒前
33秒前
Y123发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706