A 2D-CNN-Based Two-Stage Structural Damage Localization and Quantification Technique Using Time Domain Vibration Data

计算机科学 结构健康监测 卷积神经网络 帧(网络) 流离失所(心理学) 噪音(视频) 人工智能 时域 振动 加速度 模式识别(心理学) 结构工程 计算机视觉 工程类 图像(数学) 心理学 电信 物理 经典力学 量子力学 心理治疗师
作者
T. K. Das,Shyamal Guchhait
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:24 (20) 被引量:2
标识
DOI:10.1142/s0219455424502328
摘要

The conventional approaches for detecting structural degradation are time-consuming, labor-intensive, and costly. The physical monitoring of the structure also poses risks to the health and safety of supervisors. Therefore, damage estimation of any structure using artificial intelligence (AI), more specifically deep learning (DL), is becoming more significant in civil infrastructure. In the presented research article, an efficient two-stage damage detection method is proposed for structural damage detection (SDD) from time domain vibration signals. The proposed method utilizes two-dimensional convolutional neural network (2D-CNN) architecture as a DL algorithm for damage detection. Here, a computer-aided damage detection method for steel beam and frame-type structures is developed using 2D-CNN algorithm in the Google Colab platform. The effectiveness of the proposed method is first verified, and it provides more than 90% accuracy for identifying the damage location and severity of a cantilever beam for single- and multi-damage scenarios from numerically simulated noisy displacement data. The algorithm is also experimentally validated through the raw acceleration data of damaged steel frame joints collected from the Qatar University Grandstand simulator (QUGS). The proposed 2D-CNN algorithm performs better than other DL algorithms by achieving 100% accuracy within 10 epochs for damage detection of steel frames using QUGS data. It demonstrates significant potential for detecting damage location and quantifying damages for single- and multi-damage scenarios using noise-free and noisy datasets. The primary contribution of this study resides in the implementation of two-stage damage detection algorithm utilizing 2D-CNN with time domain vibration response for multiclass damage identification and quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sgjj33完成签到,获得积分10
1秒前
情怀应助凝子老师采纳,获得10
2秒前
迪丽盐巴完成签到,获得积分10
3秒前
7秒前
8秒前
合适的致远完成签到,获得积分10
10秒前
小马甲应助sgjj33采纳,获得10
12秒前
所所应助奋斗灵波采纳,获得10
13秒前
14秒前
慌糖完成签到,获得积分10
15秒前
liu完成签到,获得积分10
17秒前
柔弱凡松发布了新的文献求助10
19秒前
19秒前
21秒前
QQQQ发布了新的文献求助20
21秒前
zy完成签到 ,获得积分10
21秒前
坦率若颜发布了新的文献求助10
25秒前
terence应助YYJ25采纳,获得10
26秒前
28秒前
30秒前
30秒前
JianminLuo完成签到 ,获得积分10
31秒前
慌糖发布了新的文献求助10
31秒前
贪玩语蓉完成签到,获得积分10
32秒前
33秒前
heidi发布了新的文献求助10
34秒前
34秒前
CipherSage应助昵称采纳,获得10
34秒前
所得皆所愿完成签到 ,获得积分10
34秒前
英俊的铭应助浙江嘉兴采纳,获得10
36秒前
caoyy发布了新的文献求助10
37秒前
39秒前
花陵完成签到 ,获得积分10
39秒前
田様应助youjiang采纳,获得10
39秒前
lixm发布了新的文献求助10
40秒前
41秒前
春眠不觉小小酥完成签到,获得积分10
42秒前
42秒前
42秒前
JerryZ发布了新的文献求助10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851