Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applications

转化式学习 医学 生物医学 人工智能 计算机科学 生物信息学 心理学 发展心理学 生物
作者
Rajesh Bhayana
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1) 被引量:39
标识
DOI:10.1148/radiol.232756
摘要

Although chatbots have existed for decades, the emergence of transformer-based large language models (LLMs) has captivated the world through the most recent wave of artificial intelligence chatbots, including ChatGPT. Transformers are a type of neural network architecture that enables better contextual understanding of language and efficient training on massive amounts of unlabeled data, such as unstructured text from the internet. As LLMs have increased in size, their improved performance and emergent abilities have revolutionized natural language processing. Since language is integral to human thought, applications based on LLMs have transformative potential in many industries. In fact, LLM-based chatbots have demonstrated human-level performance on many professional benchmarks, including in radiology. LLMs offer numerous clinical and research applications in radiology, several of which have been explored in the literature with encouraging results. Multimodal LLMs can simultaneously interpret text and images to generate reports, closely mimicking current diagnostic pathways in radiology. Thus, from requisition to report, LLMs have the opportunity to positively impact nearly every step of the radiology journey. Yet, these impressive models are not without limitations. This article reviews the limitations of LLMs and mitigation strategies, as well as potential uses of LLMs, including multimodal models. Also reviewed are existing LLM-based applications that can enhance efficiency in supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uniquelin完成签到,获得积分10
1秒前
十一玮完成签到,获得积分10
1秒前
淡然的寻冬完成签到 ,获得积分10
1秒前
sln完成签到,获得积分10
2秒前
kakakakak完成签到,获得积分10
2秒前
善学以致用应助xpd采纳,获得10
2秒前
Denmark完成签到 ,获得积分10
3秒前
3秒前
Summer完成签到,获得积分10
3秒前
小蘑菇应助666采纳,获得10
4秒前
寻道图强应助岸芷汀兰采纳,获得200
5秒前
遇见渔火发布了新的文献求助10
5秒前
爸爸完成签到,获得积分10
5秒前
海洋完成签到,获得积分10
5秒前
pfliu完成签到,获得积分10
6秒前
高贵的思天完成签到,获得积分10
6秒前
meizi0109完成签到 ,获得积分10
7秒前
赘婿应助keyan采纳,获得10
7秒前
安诺完成签到,获得积分10
7秒前
camillelizhaohe完成签到,获得积分10
7秒前
8秒前
李健应助Cc采纳,获得10
8秒前
尹山蝶完成签到,获得积分10
9秒前
11完成签到,获得积分10
10秒前
pfliu发布了新的文献求助30
11秒前
窝窝头完成签到,获得积分10
12秒前
ding应助666采纳,获得10
14秒前
ak47完成签到,获得积分10
14秒前
freedom完成签到,获得积分10
14秒前
博慧完成签到 ,获得积分10
14秒前
yy完成签到,获得积分10
15秒前
Ming完成签到,获得积分10
16秒前
zjzjzjzjzj完成签到 ,获得积分10
16秒前
17秒前
天天好心情完成签到,获得积分10
17秒前
英姑应助xpd采纳,获得10
18秒前
Rosaline完成签到 ,获得积分10
18秒前
19秒前
zero完成签到,获得积分10
19秒前
Sandy完成签到,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443