已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applications

转化式学习 医学 生物医学 人工智能 计算机科学 生物信息学 心理学 发展心理学 生物
作者
Rajesh Bhayana
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1) 被引量:39
标识
DOI:10.1148/radiol.232756
摘要

Although chatbots have existed for decades, the emergence of transformer-based large language models (LLMs) has captivated the world through the most recent wave of artificial intelligence chatbots, including ChatGPT. Transformers are a type of neural network architecture that enables better contextual understanding of language and efficient training on massive amounts of unlabeled data, such as unstructured text from the internet. As LLMs have increased in size, their improved performance and emergent abilities have revolutionized natural language processing. Since language is integral to human thought, applications based on LLMs have transformative potential in many industries. In fact, LLM-based chatbots have demonstrated human-level performance on many professional benchmarks, including in radiology. LLMs offer numerous clinical and research applications in radiology, several of which have been explored in the literature with encouraging results. Multimodal LLMs can simultaneously interpret text and images to generate reports, closely mimicking current diagnostic pathways in radiology. Thus, from requisition to report, LLMs have the opportunity to positively impact nearly every step of the radiology journey. Yet, these impressive models are not without limitations. This article reviews the limitations of LLMs and mitigation strategies, as well as potential uses of LLMs, including multimodal models. Also reviewed are existing LLM-based applications that can enhance efficiency in supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yulong完成签到,获得积分10
2秒前
orange9完成签到,获得积分10
2秒前
4秒前
orange9发布了新的文献求助10
5秒前
张尧摇摇摇完成签到 ,获得积分10
5秒前
wyz完成签到,获得积分10
5秒前
天下无敌完成签到 ,获得积分10
6秒前
7秒前
小瓜完成签到 ,获得积分10
7秒前
飞乐扣完成签到 ,获得积分10
9秒前
弧光完成签到 ,获得积分10
10秒前
FashionBoy应助lxz采纳,获得10
11秒前
shweah2003完成签到,获得积分10
12秒前
16秒前
斯文的苡完成签到,获得积分10
17秒前
18秒前
19秒前
沉静一刀完成签到 ,获得积分10
21秒前
22秒前
23秒前
25秒前
25秒前
25秒前
鲤鱼雪一发布了新的文献求助80
27秒前
27秒前
29秒前
kk完成签到,获得积分10
30秒前
31秒前
32秒前
Frank给20777KKK的求助进行了留言
34秒前
坚强的紊关注了科研通微信公众号
35秒前
35秒前
子车半邪发布了新的文献求助20
36秒前
野性的孤菱完成签到,获得积分10
36秒前
神内打工人完成签到 ,获得积分10
40秒前
40秒前
大鱼发布了新的文献求助10
42秒前
咕噜完成签到 ,获得积分10
42秒前
45秒前
顺利千柔发布了新的文献求助10
46秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081480
求助须知:如何正确求助?哪些是违规求助? 2734243
关于积分的说明 7532236
捐赠科研通 2383625
什么是DOI,文献DOI怎么找? 1264019
科研通“疑难数据库(出版商)”最低求助积分说明 612456
版权声明 597577