Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice

因果推理 梅德林 观察研究 计算机科学 数据提取 推论 数据科学 人工智能 医学 心理学 政治学 病理 法学
作者
Jim M. Smit,Jesse H. Krijthe,W. M. R. Kant,Jeremy Labrecque,Matthieu Komorowski,Diederik Gommers,Jasper van Bommel,Marcel J. T. Reinders,Michel E. van Genderen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1038/s41746-023-00961-1
摘要

Abstract This scoping review focuses on the essential role of models for causal inference in shaping actionable artificial intelligence (AI) designed to aid clinicians in decision-making. The objective was to identify and evaluate the reporting quality of studies introducing models for causal inference in intensive care units (ICUs), and to provide recommendations to improve the future landscape of research practices in this domain. To achieve this, we searched various databases including Embase, MEDLINE ALL, Web of Science Core Collection, Google Scholar, medRxiv, bioRxiv, arXiv, and the ACM Digital Library. Studies involving models for causal inference addressing time-varying treatments in the adult ICU were reviewed. Data extraction encompassed the study settings and methodologies applied. Furthermore, we assessed reporting quality of target trial components (i.e., eligibility criteria, treatment strategies, follow-up period, outcome, and analysis plan) and main causal assumptions (i.e., conditional exchangeability, positivity, and consistency). Among the 2184 titles screened, 79 studies met the inclusion criteria. The methodologies used were G methods (61%) and reinforcement learning methods (39%). Studies considered both static (51%) and dynamic treatment regimes (49%). Only 30 (38%) of the studies reported all five target trial components, and only seven (9%) studies mentioned all three causal assumptions. To achieve actionable AI in the ICU, we advocate careful consideration of the causal question of interest, describing this research question as a target trial emulation, usage of appropriate causal inference methods, and acknowledgement (and examination of potential violations of) the causal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故酒发布了新的文献求助10
刚刚
刚刚
老迟到的芹菜应助黎明采纳,获得10
1秒前
小二郎应助Nikki采纳,获得10
1秒前
Orange应助认真连虎采纳,获得10
2秒前
zhangnan发布了新的文献求助10
2秒前
2秒前
蓝桉完成签到,获得积分10
2秒前
大饼完成签到 ,获得积分10
2秒前
科研通AI6应助chenjh采纳,获得10
5秒前
cc发布了新的文献求助10
5秒前
5秒前
小丁关注了科研通微信公众号
6秒前
lu完成签到,获得积分10
6秒前
7秒前
8秒前
wanci应助Nikii采纳,获得10
8秒前
8秒前
iuiia应助Heria采纳,获得10
8秒前
8秒前
8秒前
8秒前
欣心发布了新的文献求助10
9秒前
Gc发布了新的文献求助10
9秒前
iuiia应助王先生采纳,获得10
9秒前
9秒前
10秒前
10秒前
634301059完成签到 ,获得积分10
10秒前
啊建发布了新的文献求助10
11秒前
11秒前
英姑应助超人不会飞采纳,获得10
11秒前
Mininine完成签到,获得积分10
11秒前
11秒前
在水一方应助面包小狗采纳,获得10
11秒前
12秒前
六尺巷完成签到,获得积分10
12秒前
Bellona发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342027
求助须知:如何正确求助?哪些是违规求助? 4478011
关于积分的说明 13937752
捐赠科研通 4374391
什么是DOI,文献DOI怎么找? 2403437
邀请新用户注册赠送积分活动 1396200
关于科研通互助平台的介绍 1368215