Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice

因果推理 梅德林 观察研究 计算机科学 数据提取 推论 数据科学 人工智能 医学 心理学 政治学 病理 法学
作者
Jim M. Smit,Jesse H. Krijthe,W. M. R. Kant,Jeremy Labrecque,Matthieu Komorowski,Diederik Gommers,Jasper van Bommel,Marcel J. T. Reinders,Michel E. van Genderen
出处
期刊:npj digital medicine [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1038/s41746-023-00961-1
摘要

Abstract This scoping review focuses on the essential role of models for causal inference in shaping actionable artificial intelligence (AI) designed to aid clinicians in decision-making. The objective was to identify and evaluate the reporting quality of studies introducing models for causal inference in intensive care units (ICUs), and to provide recommendations to improve the future landscape of research practices in this domain. To achieve this, we searched various databases including Embase, MEDLINE ALL, Web of Science Core Collection, Google Scholar, medRxiv, bioRxiv, arXiv, and the ACM Digital Library. Studies involving models for causal inference addressing time-varying treatments in the adult ICU were reviewed. Data extraction encompassed the study settings and methodologies applied. Furthermore, we assessed reporting quality of target trial components (i.e., eligibility criteria, treatment strategies, follow-up period, outcome, and analysis plan) and main causal assumptions (i.e., conditional exchangeability, positivity, and consistency). Among the 2184 titles screened, 79 studies met the inclusion criteria. The methodologies used were G methods (61%) and reinforcement learning methods (39%). Studies considered both static (51%) and dynamic treatment regimes (49%). Only 30 (38%) of the studies reported all five target trial components, and only seven (9%) studies mentioned all three causal assumptions. To achieve actionable AI in the ICU, we advocate careful consideration of the causal question of interest, describing this research question as a target trial emulation, usage of appropriate causal inference methods, and acknowledgement (and examination of potential violations of) the causal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zzzzz应助牛牛采纳,获得10
1秒前
2秒前
hahaha完成签到,获得积分10
2秒前
2秒前
minjeong完成签到 ,获得积分10
3秒前
南山发布了新的文献求助10
3秒前
XYYX完成签到,获得积分10
3秒前
打打应助含蓄的明雪采纳,获得10
3秒前
灵舒完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助aa采纳,获得10
4秒前
无尽夏完成签到,获得积分10
5秒前
郭一鸣完成签到,获得积分10
5秒前
马桶盖盖子完成签到 ,获得积分10
5秒前
kongbai发布了新的文献求助10
5秒前
qi完成签到,获得积分10
5秒前
阳光青烟发布了新的文献求助10
6秒前
张津浩完成签到,获得积分10
6秒前
yangguang2000发布了新的文献求助10
6秒前
漠池完成签到,获得积分10
6秒前
葶ting完成签到 ,获得积分10
6秒前
花落发布了新的文献求助10
7秒前
奈克罗普陀西斯完成签到,获得积分10
7秒前
852应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
xjcy应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得30
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
米莉发布了新的文献求助30
8秒前
泡沫发布了新的文献求助10
8秒前
偶哩哇呐发布了新的文献求助10
8秒前
开放的映波完成签到,获得积分20
8秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257400
求助须知:如何正确求助?哪些是违规求助? 2899333
关于积分的说明 8305202
捐赠科研通 2568637
什么是DOI,文献DOI怎么找? 1395187
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630755