Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice

因果推理 梅德林 观察研究 计算机科学 数据提取 推论 数据科学 人工智能 医学 心理学 政治学 病理 法学
作者
Jim M. Smit,Jesse H. Krijthe,W. M. R. Kant,Jeremy Labrecque,Matthieu Komorowski,Diederik Gommers,Jasper van Bommel,Marcel J. T. Reinders,Michel E. van Genderen
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:6 (1)
标识
DOI:10.1038/s41746-023-00961-1
摘要

Abstract This scoping review focuses on the essential role of models for causal inference in shaping actionable artificial intelligence (AI) designed to aid clinicians in decision-making. The objective was to identify and evaluate the reporting quality of studies introducing models for causal inference in intensive care units (ICUs), and to provide recommendations to improve the future landscape of research practices in this domain. To achieve this, we searched various databases including Embase, MEDLINE ALL, Web of Science Core Collection, Google Scholar, medRxiv, bioRxiv, arXiv, and the ACM Digital Library. Studies involving models for causal inference addressing time-varying treatments in the adult ICU were reviewed. Data extraction encompassed the study settings and methodologies applied. Furthermore, we assessed reporting quality of target trial components (i.e., eligibility criteria, treatment strategies, follow-up period, outcome, and analysis plan) and main causal assumptions (i.e., conditional exchangeability, positivity, and consistency). Among the 2184 titles screened, 79 studies met the inclusion criteria. The methodologies used were G methods (61%) and reinforcement learning methods (39%). Studies considered both static (51%) and dynamic treatment regimes (49%). Only 30 (38%) of the studies reported all five target trial components, and only seven (9%) studies mentioned all three causal assumptions. To achieve actionable AI in the ICU, we advocate careful consideration of the causal question of interest, describing this research question as a target trial emulation, usage of appropriate causal inference methods, and acknowledgement (and examination of potential violations of) the causal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼叮叮完成签到,获得积分10
刚刚
1秒前
英俊的铭应助fff采纳,获得10
1秒前
侯mm完成签到,获得积分10
1秒前
1秒前
晨雾完成签到 ,获得积分10
1秒前
2秒前
万能图书馆应助陶军辉采纳,获得10
2秒前
2秒前
tangpc完成签到,获得积分10
3秒前
oldjeff发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
默默雅阳发布了新的文献求助30
5秒前
三月雪卿完成签到,获得积分10
5秒前
5秒前
5秒前
善学以致用应助程爽采纳,获得10
5秒前
5秒前
coffe逗发布了新的文献求助10
5秒前
隐形曼青应助不攻自破采纳,获得10
5秒前
18°N天水色完成签到,获得积分10
6秒前
Glufo发布了新的文献求助10
6秒前
6秒前
j_lan完成签到,获得积分10
7秒前
7秒前
17发布了新的文献求助10
8秒前
哇哈哈哈完成签到,获得积分10
8秒前
充电宝应助Cuillli采纳,获得10
8秒前
9秒前
默默雅阳完成签到,获得积分10
10秒前
Yulei_Qian完成签到,获得积分10
10秒前
10秒前
独角兽完成签到,获得积分20
10秒前
11秒前
Glufo完成签到,获得积分10
11秒前
华仔应助小赵采纳,获得10
11秒前
12秒前
隐形的书瑶完成签到 ,获得积分10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345