Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice

因果推理 梅德林 观察研究 计算机科学 数据提取 推论 数据科学 人工智能 医学 心理学 政治学 病理 法学
作者
Jim M. Smit,Jesse H. Krijthe,W. M. R. Kant,Jeremy Labrecque,Matthieu Komorowski,Diederik Gommers,Jasper van Bommel,Marcel J. T. Reinders,Michel E. van Genderen
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:6 (1)
标识
DOI:10.1038/s41746-023-00961-1
摘要

Abstract This scoping review focuses on the essential role of models for causal inference in shaping actionable artificial intelligence (AI) designed to aid clinicians in decision-making. The objective was to identify and evaluate the reporting quality of studies introducing models for causal inference in intensive care units (ICUs), and to provide recommendations to improve the future landscape of research practices in this domain. To achieve this, we searched various databases including Embase, MEDLINE ALL, Web of Science Core Collection, Google Scholar, medRxiv, bioRxiv, arXiv, and the ACM Digital Library. Studies involving models for causal inference addressing time-varying treatments in the adult ICU were reviewed. Data extraction encompassed the study settings and methodologies applied. Furthermore, we assessed reporting quality of target trial components (i.e., eligibility criteria, treatment strategies, follow-up period, outcome, and analysis plan) and main causal assumptions (i.e., conditional exchangeability, positivity, and consistency). Among the 2184 titles screened, 79 studies met the inclusion criteria. The methodologies used were G methods (61%) and reinforcement learning methods (39%). Studies considered both static (51%) and dynamic treatment regimes (49%). Only 30 (38%) of the studies reported all five target trial components, and only seven (9%) studies mentioned all three causal assumptions. To achieve actionable AI in the ICU, we advocate careful consideration of the causal question of interest, describing this research question as a target trial emulation, usage of appropriate causal inference methods, and acknowledgement (and examination of potential violations of) the causal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的小迷弟应助小畅采纳,获得10
1秒前
1秒前
香蕉觅云应助zyd采纳,获得10
1秒前
CodeCraft应助瑶瑶采纳,获得10
1秒前
肥猫发布了新的文献求助10
2秒前
球球发布了新的文献求助10
3秒前
水水水完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
森陌夏栀发布了新的文献求助10
3秒前
123应助雷涵晶采纳,获得10
4秒前
4秒前
Bai_shao完成签到,获得积分10
4秒前
5秒前
Daily发布了新的文献求助10
5秒前
阳佟水蓉完成签到,获得积分10
5秒前
5秒前
英姑应助鲜艳的手链采纳,获得10
6秒前
6秒前
6秒前
7秒前
欣欣完成签到 ,获得积分10
7秒前
香蕉觅云应助龚仕杰采纳,获得10
7秒前
淡淡芷天应助球球采纳,获得10
7秒前
Zhang完成签到,获得积分10
7秒前
邱雪辉完成签到,获得积分10
7秒前
8秒前
隐形曼青应助刘欣采纳,获得10
8秒前
newsl完成签到,获得积分10
8秒前
9秒前
9秒前
隐形曼青应助yy湫采纳,获得10
9秒前
shalom完成签到,获得积分10
9秒前
Hello应助yier采纳,获得10
10秒前
默默发布了新的文献求助10
10秒前
10秒前
浮浮世世发布了新的文献求助10
10秒前
11秒前
吕坏发布了新的文献求助10
11秒前
WZQ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454