Detection network for multi-size and multi-target tea bud leaves in the field of view via improved YOLOv7

领域(数学) 园艺 生物系统 生物 计算机科学 农业工程 工程类 数学 纯数学
作者
Tianci Chen,Haoxin Li,Jiazheng Chen,Zhiheng Zeng,Chongyang Han,Wei Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108700-108700
标识
DOI:10.1016/j.compag.2024.108700
摘要

In the natural tea plantation environment, the accurate detection of multi-size and multi-target tea bud leaves within a wide field of view is essential for successful tea picking. However, the detection task is challenging due to factors such as the targets have a high resemblance to the background color, and the size of tea varies across different varieties and growth conditions. Additionally, there are numerous targets in the field of view, all of which contribute to the increased difficulty in detecting tea bud leaves. To address these challenges, this paper presents a novel method for the detection of tea bud leaves. The method incorporates a selective kernel attention mechanism in the Backbone network to enhance the ability to extract morphological features. Then a new multi-feature fusion module is introduced to combine different local features and integrate them with global features, capturing both local and global dependencies, and enabling comprehensive and distinct feature representation. Furthermore, an effective loss function is employed to calculate the loss values for class probability and objective score, penalizing false detections and missed detections during the training process. The experimental results demonstrate that the proposed model improved YOLOv7 achieves superior detection performance and robustness, with a recall rate of 84.95%, precision of 90.99%, and average precision of 94.43%. These values are approximately 10% higher compared to the original YOLOv7 model. The detection network can accurate detection of tea bud leaves in tea plantation environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yjf完成签到,获得积分10
刚刚
款解耦完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
木木发布了新的文献求助10
3秒前
炙热逍遥完成签到 ,获得积分10
4秒前
roger发布了新的文献求助10
6秒前
恶恶么v发布了新的文献求助10
6秒前
SS发布了新的文献求助10
7秒前
8秒前
8秒前
昵称完成签到,获得积分10
9秒前
dd发布了新的文献求助10
11秒前
李敏之完成签到 ,获得积分10
13秒前
Cx完成签到,获得积分10
15秒前
momo完成签到,获得积分10
17秒前
ll发布了新的文献求助10
18秒前
英勇剑完成签到 ,获得积分10
18秒前
小幸运R完成签到 ,获得积分10
19秒前
19秒前
饱满秋发布了新的文献求助10
21秒前
冰凝完成签到,获得积分10
22秒前
amber发布了新的文献求助10
22秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
23秒前
25秒前
莎莎完成签到 ,获得积分10
25秒前
NAOKI应助科研通管家采纳,获得10
25秒前
oceanao应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
oceanao应助科研通管家采纳,获得10
25秒前
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
活泼海冬发布了新的文献求助10
28秒前
顾家老攻完成签到,获得积分10
28秒前
jhwang完成签到,获得积分10
29秒前
31秒前
小小小完成签到,获得积分10
33秒前
yumo关注了科研通微信公众号
34秒前
我是老大应助笨笨电灯胆采纳,获得10
35秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168308
求助须知:如何正确求助?哪些是违规求助? 2819642
关于积分的说明 7927284
捐赠科研通 2479437
什么是DOI,文献DOI怎么找? 1320927
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458