A bidirectional collaborative method based on an improved artificial fish swarm algorithm for ship pipe and equipment layout design

群体行为 计算机科学 海洋工程 算法 工程类 工程制图 人工智能 渔业 生物
作者
Hongshuo Zhang,Yanyun Yu,Q.J. Zhang,Yuansong Yang,Haiyang Liu,Yan Lin
出处
期刊:Ocean Engineering [Elsevier]
卷期号:296: 117045-117045 被引量:1
标识
DOI:10.1016/j.oceaneng.2024.117045
摘要

Ship engine room layout design (SERLD) significantly impacts a ship's transportation efficiency and safety by focusing on the layouts of equipment and piping. However, owing to complex constraints, previous research has mainly focused on single-dimensional layout designs and has failed to provide comprehensive references for designers. To address this research gap, this study proposes a collaborative layout method based on a multistrategy hybrid-objective artificial fish swarm algorithm (HMSAFSA). In terms of the underlying mathematical representation, a more stable Manhattan trajectory-based coding method suitable for a collaborative layout is proposed. Building on this coding method, multiple strategies are incorporated into the heuristic AFSA to enhance its optimization and collaborative performance. Collaborative evaluation functions and methods are designed and refined to ensure effective layout results for multiple objectives. Furthermore, a layout procedure incorporating bidirectional guidance strategies and hierarchical thinking is proposed. This method achieves collaborative layouts through the mutual guidance of optimal objectives. Finally, the effectiveness of the proposed method is verified through representative cases of various types of ship engine rooms in practical engineering. The method demonstrates its capability to offer multiple optimal layout schemes, thus presenting substantial value for practical engineering designs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
刚刚
刚刚
wenxianxiazai123完成签到,获得积分10
刚刚
12完成签到,获得积分10
1秒前
1秒前
1z2x3s完成签到,获得积分10
3秒前
欢呼以冬发布了新的文献求助30
3秒前
石大李克完成签到,获得积分10
3秒前
宛雷雅完成签到,获得积分10
3秒前
Nefelibate完成签到,获得积分10
4秒前
爱撒娇的砖头完成签到,获得积分10
4秒前
wam完成签到,获得积分10
4秒前
David完成签到 ,获得积分10
4秒前
田様应助饱满菠萝采纳,获得10
4秒前
liufang发布了新的文献求助10
4秒前
Akim应助啊啊啊采纳,获得10
4秒前
绛橘色的日落完成签到,获得积分10
5秒前
伊利丹完成签到,获得积分10
6秒前
f1mike110完成签到,获得积分10
6秒前
8秒前
快乐达不刘完成签到,获得积分10
8秒前
迷路的糜完成签到,获得积分10
9秒前
不懈奋进应助f1mike110采纳,获得30
10秒前
完美世界应助阔达凝天采纳,获得10
11秒前
11秒前
剑指天涯完成签到,获得积分10
11秒前
张瑞宁完成签到,获得积分10
11秒前
住在月亮隔壁完成签到,获得积分10
12秒前
科研通AI6应助qq采纳,获得10
13秒前
13秒前
田様应助qq采纳,获得10
13秒前
饱满菠萝给饱满菠萝的求助进行了留言
14秒前
若水完成签到 ,获得积分10
14秒前
15秒前
16秒前
万惜文完成签到,获得积分10
16秒前
16秒前
花痴的慕蕊完成签到,获得积分10
16秒前
研友_ngqjz8发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809