已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early fault prediction for wind turbines based on deep learning

涡轮机 风力发电 随机森林 断层(地质) 深度学习 时间序列 机器学习 计算机科学 人工智能 可靠性工程 工程类 地质学 地震学 电气工程 机械工程
作者
Kuan-Cheng Lin,G. J. Y. Hsu,Haowei Wang,Mu‐Yen Chen
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:64: 103684-103684 被引量:13
标识
DOI:10.1016/j.seta.2024.103684
摘要

This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan's Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助MissZhang采纳,获得10
2秒前
烟花应助不信人间有白头采纳,获得10
3秒前
余额不足完成签到,获得积分10
3秒前
甜甜的紫菜完成签到 ,获得积分10
5秒前
sevenE发布了新的文献求助10
5秒前
迷路冰颜完成签到 ,获得积分10
5秒前
ll发布了新的文献求助10
5秒前
栗昊完成签到,获得积分10
6秒前
久久丫完成签到 ,获得积分10
6秒前
坚定盈发布了新的文献求助10
6秒前
ling完成签到,获得积分10
7秒前
10秒前
qin123完成签到 ,获得积分10
11秒前
11秒前
浮游应助孟喵喵喵采纳,获得10
11秒前
11秒前
aikka完成签到,获得积分10
12秒前
热心的豌豆完成签到 ,获得积分10
13秒前
16秒前
午盏发布了新的文献求助10
16秒前
小蘑菇应助aikka采纳,获得30
16秒前
温柔冰岚完成签到 ,获得积分10
17秒前
倩倩完成签到 ,获得积分10
17秒前
18秒前
18秒前
蟑螂恶霸完成签到,获得积分20
18秒前
18秒前
19秒前
Hello应助ceeray23采纳,获得20
20秒前
Apple发布了新的文献求助10
21秒前
ll完成签到,获得积分20
21秒前
21秒前
wsy发布了新的文献求助30
22秒前
海岸完成签到,获得积分10
22秒前
111发布了新的文献求助10
22秒前
谷雨完成签到 ,获得积分10
23秒前
25秒前
小马甲应助ceeray23采纳,获得20
27秒前
池雨完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576