CycleGAN Image Defogging Method Based on Residual Dual Attention Mechanism

计算机科学 对偶(语法数字) 残余物 计算机视觉 图像(数学) 人工智能 机制(生物学) 算法 物理 艺术 量子力学 文学类
作者
Yingjie Zhang,Qi Hu,Yuning Wei,Jiao Wang
标识
DOI:10.1109/eiecs59936.2023.10435552
摘要

The traditional image defogging method based on atmospheric scattering model is prone to color distortion and feature loss in the process of image defogging due to the variation of atmospheric scattering coefficient in the environment. This article focuses on the problem of color distortion and feature loss in image defogging caused by the CycleGAN network, We propose a CycleGAN image defogging method based on residual attention mechanism. Firstly, we add channel and spatial attention mechanisms to the residual network to form spatial and channel attention residual blocks, which are added to the two generators of CycleGAN to prevent color distortion during feature extraction. Secondly, we incorporate cyclic perceptual consistency loss, When the CycleGAN network learns images from two different style datasets, due to the fact that the two datasets being learned are clear images and foggy images, most foggy images are severely damaged. The cycle preserves the original image structure by looking at the combination of high-level and low-level features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了一李应助zgaolei采纳,获得10
2秒前
周先森完成签到,获得积分10
3秒前
Eternity2025完成签到 ,获得积分10
5秒前
十一完成签到,获得积分10
7秒前
香蕉子骞完成签到 ,获得积分10
8秒前
端庄大米完成签到 ,获得积分10
9秒前
11秒前
yuyiiou完成签到 ,获得积分10
11秒前
leo完成签到,获得积分10
13秒前
cc完成签到 ,获得积分10
18秒前
zwy109完成签到 ,获得积分10
19秒前
科研通AI6应助寒冷的断秋采纳,获得10
21秒前
xyzlancet完成签到,获得积分10
24秒前
xueluxin完成签到 ,获得积分10
25秒前
Star完成签到,获得积分10
28秒前
无所谓发布了新的文献求助10
28秒前
YUNI完成签到 ,获得积分10
28秒前
温婉的采蓝完成签到 ,获得积分10
30秒前
乾乾完成签到,获得积分10
31秒前
happiness完成签到 ,获得积分10
32秒前
庄默羽完成签到,获得积分10
32秒前
科研通AI6应助qrt采纳,获得10
37秒前
39秒前
dizi完成签到 ,获得积分10
40秒前
活泼的寒安完成签到 ,获得积分10
42秒前
小鱼儿发布了新的文献求助10
44秒前
45秒前
江夏清完成签到,获得积分10
45秒前
一二完成签到,获得积分10
46秒前
48秒前
清爽的冬寒完成签到 ,获得积分10
1分钟前
LWJ完成签到 ,获得积分10
1分钟前
易槐完成签到 ,获得积分10
1分钟前
勤qin完成签到 ,获得积分10
1分钟前
无所谓完成签到,获得积分20
1分钟前
terryok完成签到 ,获得积分10
1分钟前
万能图书馆应助chanyelo采纳,获得10
1分钟前
yanzilin完成签到 ,获得积分10
1分钟前
1分钟前
qrt发布了新的文献求助10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378458
求助须知:如何正确求助?哪些是违规求助? 4502884
关于积分的说明 14014658
捐赠科研通 4411499
什么是DOI,文献DOI怎么找? 2423316
邀请新用户注册赠送积分活动 1416206
关于科研通互助平台的介绍 1393644