已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Randomizing Human Brain Function Representation for Brain Disease Diagnosis

计算机科学 脑图谱 人工智能 地图集(解剖学) 模式识别(心理学) 神经影像学 感兴趣区域 脑病 维数之咒 代表(政治) 机器学习 神经科学 疾病 心理学 医学 病理 政治 政治学 法学 解剖
作者
Mengjun Liu,Huifeng Zhang,Mianxin Liu,Dongdong Chen,Zixu Zhuang,Xin Wang,Lichi Zhang,Daihui Peng,Qian Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2537-2546 被引量:6
标识
DOI:10.1109/tmi.2024.3368064
摘要

Resting-state fMRI (rs-fMRI) is an effective tool for quantifying functional connectivity (FC), which plays a crucial role in exploring various brain diseases. Due to the high dimensionality of fMRI data, FC is typically computed based on the region of interest (ROI), whose parcellation relies on a pre-defined atlas. However, utilizing the brain atlas poses several challenges including (1) subjective selection bias in choosing from various brain atlases, (2) parcellation of each subject's brain with the same atlas yet disregarding individual specificity; (3) lack of interaction between brain region parcellation and downstream ROI-based FC analysis. To address these limitations, we propose a novel randomizing strategy for generating brain function representation to facilitate neural disease diagnosis. Specifically, we randomly sample brain patches, thus avoiding ROI parcellations of the brain atlas. Then, we introduce a new brain function representation framework for the sampled patches. Each patch has its function description by referring to anchor patches, as well as the position description. Furthermore, we design an adaptive-selection-assisted Transformer network to optimize and integrate the function representations of all sampled patches within each brain for neural disease diagnosis. To validate our framework, we conduct extensive evaluations on three datasets, and the experimental results establish the effectiveness and generality of our proposed method, offering a promising avenue for advancing neural disease diagnosis beyond the confines of traditional atlas-based methods. Our code is available at https://github.com/mjliu2020/RandomFR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肖恩发布了新的文献求助10
1秒前
2秒前
欧力蟹关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
研友_VZG7GZ应助包容的绿蕊采纳,获得10
3秒前
4秒前
尹静涵完成签到 ,获得积分10
5秒前
5秒前
吉良吉影发布了新的文献求助10
6秒前
nitsuj发布了新的文献求助10
7秒前
8秒前
9秒前
木木发布了新的文献求助10
9秒前
南巷晚风发布了新的文献求助10
10秒前
moderater完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
18秒前
19秒前
19秒前
微笑的忆枫完成签到 ,获得积分10
19秒前
胜似闲庭信步完成签到,获得积分10
20秒前
Evan完成签到 ,获得积分10
22秒前
23秒前
czh驳回了Hello应助
23秒前
grass发布了新的文献求助10
24秒前
包容的绿蕊完成签到,获得积分20
26秒前
27秒前
俏皮白云完成签到 ,获得积分10
28秒前
清茶旧友完成签到,获得积分10
30秒前
dd发布了新的文献求助10
30秒前
HighFeng_Lei发布了新的文献求助10
31秒前
31秒前
nitsuj发布了新的文献求助10
31秒前
我是老大应助木木采纳,获得10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422