Randomizing Human Brain Function Representation for Brain Disease Diagnosis

计算机科学 脑图谱 人工智能 地图集(解剖学) 模式识别(心理学) 神经影像学 感兴趣区域 脑病 维数之咒 代表(政治) 机器学习 神经科学 疾病 心理学 医学 病理 政治 政治学 法学 解剖
作者
Mengjun Liu,Huifeng Zhang,Mianxin Liu,Dongdong Chen,Zixu Zhuang,Xin Wang,Lichi Zhang,Daihui Peng,Qian Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2537-2546 被引量:3
标识
DOI:10.1109/tmi.2024.3368064
摘要

Resting-state fMRI (rs-fMRI) is an effective tool for quantifying functional connectivity (FC), which plays a crucial role in exploring various brain diseases. Due to the high dimensionality of fMRI data, FC is typically computed based on the region of interest (ROI), whose parcellation relies on a pre-defined atlas. However, utilizing the brain atlas poses several challenges including 1) subjective selection bias in choosing from various brain atlases, 2) parcellation of each subject's brain with the same atlas yet disregarding individual specificity; 3) lack of interaction between brain region parcellation and downstream ROI-based FC analysis. To address these limitations, we propose a novel randomizing strategy for generating brain function representation to facilitate neural disease diagnosis. Specifically, we randomly sample brain patches, thus avoiding ROI parcellations of the brain atlas. Then, we introduce a new brain function representation framework for the sampled patches. Each patch has its function description by referring to anchor patches, as well as the position description. Furthermore, we design an adaptive-selection-assisted Transformer network to optimize and integrate the function representations of all sampled patches within each brain for neural disease diagnosis. To validate our framework, we conduct extensive evaluations on three datasets, and the experimental results establish the effectiveness and generality of our proposed method, offering a promising avenue for advancing neural disease diagnosis beyond the confines of traditional atlas-based methods. Our code is available at https://github.com/mjliu2020/RandomFR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绝版的飞发布了新的文献求助10
1秒前
1秒前
性静H情逸完成签到,获得积分10
1秒前
1秒前
小二郎应助傻傻的哲瀚采纳,获得10
2秒前
爱笑的傲薇应助zyw采纳,获得10
4秒前
虎虎虎发布了新的文献求助10
5秒前
7秒前
7秒前
NexusExplorer应助宁宁宁采纳,获得10
8秒前
9秒前
10秒前
彭于晏应助紧张的怀蝶采纳,获得10
10秒前
LJM完成签到,获得积分10
11秒前
Owen应助萧水白采纳,获得100
12秒前
JamesPei应助能干的杨柿子采纳,获得10
12秒前
12秒前
陶醉的婴发布了新的文献求助10
12秒前
14秒前
竹子完成签到,获得积分10
15秒前
Shanshan发布了新的文献求助30
15秒前
15秒前
谷贝贝发布了新的文献求助10
16秒前
耶耶椰完成签到,获得积分20
17秒前
sssss发布了新的文献求助10
19秒前
黑喂狗狗完成签到,获得积分10
19秒前
holo完成签到 ,获得积分10
20秒前
22秒前
145546完成签到 ,获得积分10
25秒前
Shanshan完成签到,获得积分10
26秒前
JY完成签到,获得积分10
26秒前
28秒前
28秒前
柔弱诗筠关注了科研通微信公众号
29秒前
顾矜应助谷贝贝采纳,获得10
29秒前
Hou完成签到,获得积分10
31秒前
32秒前
35秒前
xxxidgkris应助萧水白采纳,获得100
35秒前
level完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620