亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Based Parking Space Egress for Autonomous Driving

强化学习 工具箱 计算机科学 弹道 路径(计算) 环岛 班级(哲学) 运动规划 人工智能 实时计算 机器人 工程类 运输工程 物理 天文 程序设计语言
作者
Vimal Kumar A. R.,Raghu Ram Theerthala
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2024-26-0088
摘要

<div class="section abstract"><div class="htmlview paragraph">Automated parking systems for cars have become the need of the hour globally, gaining wide acceptance from customers, and hence OEMs are working towards achieving precise/accurate automated parking. Various algorithms are being developed to plan the trajectory of the vehicle to be moved in/out of the desired parking slot. Most of these algorithms assume a static environment and don’t account for highly dynamic objects. Accounting for such objects is vital especially when autonomously exiting a parking slot and merging with traffic. This paper summarizes our initial efforts in addressing dynamic objects, specifically the ‘right of way’ aspects, while autonomously exiting a parking slot. In this study, we propose a novel approach for generating linear and angular velocity profiles using Deep Reinforcement Learning (DRL) in conjunction with Hybrid A* path planning for autonomous vehicles (AVs) navigating parking maneuvers. The aim is to address challenges faced by traditional Model Predictive Control (MPC) methods in trajectory planning, such as the lack of consideration for the right of way of the traffic participant. The proposed DRL algorithm employs a reward function that considers safety, path efficiency, and right of way aspects. The proposed system was trained using Reinforcement Learning toolbox in Matlab and tested using the Automated Driving toolbox. The results are then presented for parallel park-out case which show the effectiveness of the proposed solution.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hillson完成签到,获得积分10
4秒前
Mark_He发布了新的文献求助10
8秒前
1分钟前
nolan完成签到 ,获得积分10
1分钟前
科目三应助蒙豆儿采纳,获得10
2分钟前
2分钟前
2分钟前
蒙豆儿发布了新的文献求助10
2分钟前
littleboykk完成签到 ,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
华仔应助蒙豆儿采纳,获得10
3分钟前
3分钟前
蒙豆儿发布了新的文献求助10
3分钟前
狂野的雨灵完成签到,获得积分20
3分钟前
FashionBoy应助蒙豆儿采纳,获得10
4分钟前
4分钟前
科研通AI5应助马良采纳,获得10
4分钟前
4分钟前
4分钟前
蒙豆儿发布了新的文献求助10
4分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
马良发布了新的文献求助10
5分钟前
5分钟前
5分钟前
h0jian09完成签到,获得积分10
5分钟前
6分钟前
6分钟前
88C真是太神奇啦完成签到,获得积分10
6分钟前
Ava应助科研通管家采纳,获得10
6分钟前
蒙豆儿发布了新的文献求助10
6分钟前
科研通AI2S应助蒙豆儿采纳,获得10
7分钟前
8分钟前
tabblk完成签到 ,获得积分10
8分钟前
星辰大海应助tabblk采纳,获得10
8分钟前
CRUSADER完成签到,获得积分10
9分钟前
10分钟前
tabblk发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582230
求助须知:如何正确求助?哪些是违规求助? 4000003
关于积分的说明 12381980
捐赠科研通 3674886
什么是DOI,文献DOI怎么找? 2025434
邀请新用户注册赠送积分活动 1059192
科研通“疑难数据库(出版商)”最低求助积分说明 945820