人工智能
计算机科学
模式识别(心理学)
断层(地质)
信号处理
深度学习
振动
信号(编程语言)
时域
频域
图像(数学)
相似性(几何)
计算机视觉
数字信号处理
声学
物理
地震学
计算机硬件
程序设计语言
地质学
作者
Zhenxing Ren,Jianfeng Guo
出处
期刊:Tm-technisches Messen
[Oldenbourg Wissenschaftsverlag]
日期:2024-01-12
卷期号:91 (2): 129-138
被引量:1
标识
DOI:10.1515/teme-2023-0089
摘要
Abstract The vibration signal is a typical non-stationary signal, making it challenging to use traditional time-frequency analysis techniques for fault diagnosis. Therefore, this work investigates the processing of vibration signals and proposes a deep learning method based on processed signals for the fault diagnosis of ball bearings. In this work, the fault diagnosis is formulated as an image classification problem and solved with deep learning networks. The intrinsic mode functions (IMFs), converted from the vibration signals in the time domain, are then transformed into symmetrized dot pattern (SDP) images. In order to increase classification accuracy, the SDP parameters in this study are chosen by optimizing image similarity. The feasibility and accuracy of the proposed approach are examined experimentally.
科研通智能强力驱动
Strongly Powered by AbleSci AI