Service-Oriented SAGIN with Pervasive Intelligence for Resource-Constrained Users

计算机科学 分布式计算 移动边缘计算 边缘计算 网络体系结构 网络虚拟化 微服务 计算机网络 建筑 虚拟化 GSM演进的增强数据速率 云计算 服务器 人工智能 操作系统 艺术 视觉艺术
作者
Min Jia,Jian Wu,Qing Guo,Yang Yang
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 79-86 被引量:4
标识
DOI:10.1109/mnet.2024.3353414
摘要

As an indispensable architecture for future 6G communication networks, space-air-ground integrated network (SAGIN) integrates satellite networks, air networks and ground networks, greatly expanding the coverage of network space. Compared with the traditional mobile edge computing (MEC), the edge intelligence (EI) formed by combining artificial intelligence (AI) and MEC can intelligently process the edge data by embedding the AI algorithms into the edge devices with limited computing power. Therefore, this article considers applying EI to SAGIN to form the EI-driven SAGIN architecture, which can significantly enhance the communication, computing, sensing and storage capabilities of SAGIN architecture to solve the problem of efficient resource management for resource-constrained users. In this article, we first introduce the system network architecture and logical functional architecture, and give a detailed description of the components in the network architecture, and then discuss some key technologies in the system, including efficient resource utilization for microservice based on software defined network (SDN) and network function virtualization (NFV), deep reinforcement learning (DRL) based on knowledge graph for efficient storage and intelligent computing, and efficient and real-time sensing for massive information. Finally, we propose a DRL-based resource allocation and computation offloading algorithm for microservices (DRCAM) and evaluate the performance of the proposed algorithm. The simulation results show that, compared with the existing algorithms, the proposed algorithm could greatly reduce the system cost under different weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Okpooko发布了新的文献求助10
刚刚
1秒前
李鑫完成签到 ,获得积分10
1秒前
企鹅吃圣代完成签到 ,获得积分10
1秒前
夹子方糖发布了新的文献求助10
1秒前
1秒前
满天星发布了新的文献求助10
2秒前
包厉完成签到,获得积分20
3秒前
充电宝应助失眠觅云采纳,获得20
4秒前
丘比特应助一二三四采纳,获得10
4秒前
奥雷里亚诺完成签到 ,获得积分10
5秒前
科研通AI2S应助给个麦你呗采纳,获得10
5秒前
8秒前
共享精神应助wang5945采纳,获得10
10秒前
10秒前
12秒前
可爱香芦发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
烟花应助杨大大采纳,获得10
15秒前
15秒前
15秒前
火星上雨珍完成签到,获得积分10
15秒前
NexusExplorer应助饱满的千易采纳,获得10
16秒前
蓝色的多崎作完成签到,获得积分10
16秒前
w233发布了新的文献求助10
16秒前
满天星完成签到,获得积分10
17秒前
17秒前
2165完成签到,获得积分20
18秒前
李健的小迷弟应助zai采纳,获得10
19秒前
小二郎应助nishishui采纳,获得10
19秒前
fengtao发布了新的文献求助10
19秒前
HRIFFIN发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
传奇3应助迷路的初柔采纳,获得10
23秒前
蜜桃小丸子完成签到 ,获得积分10
23秒前
2165发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297