Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning

石油工程 环境科学 氢气储存 工艺工程 计算机科学 化学 核工程 化学工程 材料科学 工程类 有机化学
作者
Shaowen Mao,Bailian Chen,Mohamed Lamine Malki,Fangxuan Chen,Misael Morales,Zhiwei Ma,Mohamed Mehana
出处
期刊:Applied Energy [Elsevier BV]
卷期号:361: 122914-122914 被引量:11
标识
DOI:10.1016/j.apenergy.2024.122914
摘要

Underground hydrogen (H2) storage (UHS) has emerged as a promising technology to facilitate the widespread adoption of fluctuating renewable energy sources. However, the current UHS experience primarily focuses on salt caverns, with no working examples of storing pure H2 in porous reservoirs. A key challenge in UHS within porous rocks is the uncertainty in evaluating storage performance due to complicated geological and operational conditions. While physics-based reservoir simulations are commonly used to quantify H2 injection and withdrawal processes during storage cycles, they are computationally demanding and unsuitable for providing rapid support to UHS operations. In this study, we develop efficient reduced-order models (ROMs) for UHS in depleted natural gas reservoirs using deep neural networks (DNNs) based on comprehensive reservoir simulation data sets. The ROMs can accurately forecast UHS performance metrics (H2 withdrawal efficiency, produced H2 purity, produced gas-water ratio) across various geological and operational conditions and are over 22000 times faster than physics-based simulations. Then, we employ the ROMs for sensitivity analysis to assess the impact of geological and operational parameters on UHS performance and conduct uncertainty quantification to characterize potential performance and associated probabilities. Lastly, we present a field case study from the Dakota formation of the Basin field in the Intermountain-West (I-WEST) region, USA. Based on the ROMs' predictions, Dakota formation is favorable for UHS due to its high H2 withdrawal efficiency and purity, and low water production risk. By optimizing operational parameters, we can further improve the storage performance in Dakota formation and reduce the uncertainty in UHS performance prediction. This study introduces an efficient ROM-based approach to assess and optimize UHS performance, supporting the development of effective UHS projects in depleted gas reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
CyberHamster完成签到,获得积分10
19秒前
xiaohong完成签到,获得积分10
22秒前
朱比特完成签到,获得积分10
23秒前
24秒前
zmuzhang2019发布了新的文献求助10
30秒前
onestepcloser完成签到 ,获得积分0
30秒前
zoe完成签到 ,获得积分10
31秒前
发嗲的慕蕊完成签到 ,获得积分10
32秒前
Linson完成签到,获得积分10
33秒前
顾矜应助赵三岁采纳,获得10
47秒前
yyy2025完成签到,获得积分10
51秒前
木雨亦潇潇完成签到,获得积分10
58秒前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
1分钟前
能干冰露完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
周小鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
老张完成签到,获得积分10
2分钟前
2分钟前
zhugao完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022