亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning

石油工程 环境科学 氢气储存 工艺工程 计算机科学 化学 核工程 化学工程 材料科学 工程类 有机化学
作者
Shaowen Mao,Bailian Chen,Mohamed Lamine Malki,Fangxuan Chen,Misael Morales,Zhiwei Ma,Mohamed Mehana
出处
期刊:Applied Energy [Elsevier]
卷期号:361: 122914-122914 被引量:11
标识
DOI:10.1016/j.apenergy.2024.122914
摘要

Underground hydrogen (H2) storage (UHS) has emerged as a promising technology to facilitate the widespread adoption of fluctuating renewable energy sources. However, the current UHS experience primarily focuses on salt caverns, with no working examples of storing pure H2 in porous reservoirs. A key challenge in UHS within porous rocks is the uncertainty in evaluating storage performance due to complicated geological and operational conditions. While physics-based reservoir simulations are commonly used to quantify H2 injection and withdrawal processes during storage cycles, they are computationally demanding and unsuitable for providing rapid support to UHS operations. In this study, we develop efficient reduced-order models (ROMs) for UHS in depleted natural gas reservoirs using deep neural networks (DNNs) based on comprehensive reservoir simulation data sets. The ROMs can accurately forecast UHS performance metrics (H2 withdrawal efficiency, produced H2 purity, produced gas-water ratio) across various geological and operational conditions and are over 22000 times faster than physics-based simulations. Then, we employ the ROMs for sensitivity analysis to assess the impact of geological and operational parameters on UHS performance and conduct uncertainty quantification to characterize potential performance and associated probabilities. Lastly, we present a field case study from the Dakota formation of the Basin field in the Intermountain-West (I-WEST) region, USA. Based on the ROMs' predictions, Dakota formation is favorable for UHS due to its high H2 withdrawal efficiency and purity, and low water production risk. By optimizing operational parameters, we can further improve the storage performance in Dakota formation and reduce the uncertainty in UHS performance prediction. This study introduces an efficient ROM-based approach to assess and optimize UHS performance, supporting the development of effective UHS projects in depleted gas reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助陪你长大采纳,获得10
2秒前
哇哈哈发布了新的文献求助10
2秒前
rofsc完成签到 ,获得积分10
2秒前
高屋建瓴完成签到,获得积分10
6秒前
星辰大海应助皮格马利翁采纳,获得10
7秒前
哇哈哈完成签到,获得积分10
19秒前
22秒前
yomi完成签到 ,获得积分10
23秒前
shentaii完成签到,获得积分10
24秒前
传奇完成签到 ,获得积分10
25秒前
小昕思完成签到 ,获得积分10
35秒前
叁壶薏苡完成签到,获得积分10
35秒前
36秒前
叁壶薏苡发布了新的文献求助10
40秒前
薛婧旌完成签到,获得积分10
45秒前
46秒前
48秒前
小小发布了新的文献求助10
52秒前
54秒前
tracyzhang完成签到 ,获得积分10
54秒前
59秒前
orixero应助TKTATO采纳,获得10
1分钟前
1分钟前
wang完成签到 ,获得积分10
1分钟前
陪你长大发布了新的文献求助10
1分钟前
zhangqin发布了新的文献求助10
1分钟前
YBR完成签到 ,获得积分10
1分钟前
gppdwyyx发布了新的文献求助10
1分钟前
1分钟前
聪明安白完成签到,获得积分10
1分钟前
糊涂的冰夏完成签到 ,获得积分10
1分钟前
Hello应助糊糊采纳,获得30
1分钟前
心灵美大侠完成签到,获得积分10
1分钟前
cocolu应助谷子采纳,获得20
1分钟前
1分钟前
zhanghuiwang应助霜橙采纳,获得20
1分钟前
可爱的函函应助jbgz采纳,获得30
1分钟前
1分钟前
钱友绿完成签到 ,获得积分10
1分钟前
gppdwyyx完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455594
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022815
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387