Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries

阳极 材料科学 石墨 锂(药物) 钛酸锂 电池(电) 纳米技术 插层(化学) 化学工程 锂离子电池 无机化学 复合材料 电极 化学 医学 物理化学 工程类 功率(物理) 物理 量子力学 内分泌学
作者
C. Julien,A. Mauger
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 310-310 被引量:36
标识
DOI:10.3390/mi15030310
摘要

The most popular anode material in commercial Li-ion batteries is still graphite. However, its low intercalation potential is close to that of lithium, which results in the dendritic growth of lithium at its surface, and the formation of a passivation film that limits the rate capability and may result in safety hazards. High-performance anodes are thus needed. In this context, lithium titanite oxide (LTO) has attracted attention as this anode material has important advantages. Due to its higher lithium intercalation potential (1.55 V vs. Li+/Li), the dendritic deposition of lithium is avoided, and the safety is increased. In addition, LTO is a zero-strain material, as the volume change upon lithiation-delithiation is negligible, which increases the cycle life of the battery. Finally, the diffusion coefficient of Li+ in LTO (2 × 10−8 cm2 s−1) is larger than in graphite, which, added to the fact that the dendritic effect is avoided, increases importantly the rate capability. The LTO anode has two drawbacks. The energy density of the cells equipped with LTO anode is lower compared with the same cells with graphite anode, because the capacity of LTO is limited to 175 mAh g−1, and because of the higher redox potential. The main drawback, however, is the low electrical conductivity (10−13 S cm−1) and ionic conductivity (10−13–10−9 cm2 s−1). Different strategies have been used to address this drawback: nano-structuration of LTO to reduce the path of Li+ ions and electrons inside LTO, ion doping, and incorporation of conductive nanomaterials. The synthesis of LTO with the appropriate structure and the optimized doping and the synthesis of composites incorporating conductive materials is thus the key to achieving high-rate capability. That is why a variety of synthesis recipes have been published on the LTO-based anodes. The progress in the synthesis of LTO-based anodes in recent years is such that LTO is now considered a substitute for graphite in lithium-ion batteries for many applications, including electric cars and energy storage to solve intermittence problems of wind mills and photovoltaic plants. In this review, we examine the different techniques performed to fabricate LTO nanostructures. Details of the synthesis recipes and their relation to electrochemical performance are reported, allowing the extraction of the most powerful synthesis processes in relation to the recent experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hush完成签到,获得积分10
刚刚
刚刚
ffliu发布了新的文献求助20
1秒前
jia发布了新的文献求助10
1秒前
nini发布了新的文献求助10
1秒前
薯片发布了新的文献求助10
1秒前
思源应助不如吃茶去采纳,获得10
3秒前
taotao发布了新的文献求助10
3秒前
LL关注了科研通微信公众号
4秒前
干净的马里奥完成签到,获得积分10
4秒前
CodeCraft应助化学喵采纳,获得10
4秒前
青橘短衫完成签到,获得积分10
5秒前
5秒前
共享精神应助胡图图233采纳,获得10
6秒前
科目三应助张泽芝采纳,获得10
7秒前
以光之名完成签到,获得积分10
7秒前
蛋堡发布了新的文献求助10
8秒前
8秒前
呼大人关注了科研通微信公众号
9秒前
oon完成签到,获得积分10
9秒前
depurge完成签到,获得积分10
9秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
安南应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得20
11秒前
FashionBoy应助结实的凉面采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960247
求助须知:如何正确求助?哪些是违规求助? 4220767
关于积分的说明 13144216
捐赠科研通 4004605
什么是DOI,文献DOI怎么找? 2191552
邀请新用户注册赠送积分活动 1205753
关于科研通互助平台的介绍 1116915