Data Quality, Data Diversity and Data Provenance: An Ethical Perspective

出处 透视图(图形) 多样性(政治) 数据质量 质量(理念) 数据科学 心理学 社会学 计算机科学 业务 生物 认识论 哲学 人工智能 人类学 营销 古生物学 公制(单位)
作者
Edoardo Ramalli
出处
期刊:SpringerBriefs in applied sciences and technology 卷期号:: 39-48
标识
DOI:10.1007/978-3-031-52962-7_4
摘要

Predictive modelsPredictive model are increasingly pervasive in many areas of daily life, from engineering to the social sciences. Their use is gradually automating and replacing tasks that were typically done manually and are no longer sustainable. Recently, the increasing amount of data and developments in data science facilitated the deployment of predictive models by creating them through data-driven approaches. The first wave of data science aimed to improve predictive models in terms of accuracy and efficiency. However, the ethical implications and the careless use of these models have been overlooked. After several ethical problems arose during the second wave of data science, the focus shifted from what could be done with data to what should or should not be done with them and how. As a result of this new ethical attention to the use of data, the entire life cycle of data was then analyzed with newly proposed methodologies. Data QualityData quality is one of the main factors often under the spotlight. It is fundamental to build an accurate and ethical predictive modelPredictive model since it directly affects the model’s outcomes. However, other data-related elements are equally important, such as diversity and provenance. This chapter claims that such aspects are also essential and should be regularly and equally present in the data science ethical-technical debate. Thus, starting from practical examples, this work first presents Data Quality, Data DiversityData diversity, and Data ProvenanceData provenance problems. Then, it discusses the corresponding trade-off and mitigations and how they coexist and cooperates to address some ethical issues from a technical perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
诗与完成签到 ,获得积分20
2秒前
yuyuyu完成签到,获得积分10
3秒前
zhaocai完成签到,获得积分10
3秒前
6秒前
6秒前
6秒前
7秒前
7秒前
10秒前
10秒前
cc发布了新的文献求助30
10秒前
10秒前
卡拉米发布了新的文献求助10
11秒前
洁净如柏完成签到,获得积分20
11秒前
11秒前
英姑应助快乐科研采纳,获得10
11秒前
12秒前
12秒前
13秒前
13秒前
volca发布了新的文献求助10
14秒前
15秒前
潇潇发布了新的文献求助10
15秒前
乐乐应助二十二采纳,获得10
15秒前
16秒前
各位大牛帮帮忙完成签到 ,获得积分10
16秒前
16秒前
16秒前
新起点发布了新的文献求助10
17秒前
Jia发布了新的文献求助10
18秒前
英姑应助小叶子采纳,获得10
19秒前
知度完成签到,获得积分10
19秒前
芳华如梦发布了新的文献求助30
20秒前
科目三应助cc采纳,获得10
20秒前
heartsooo完成签到,获得积分10
21秒前
21秒前
JamesPei应助Sue采纳,获得10
21秒前
香蕉觅云应助潇潇采纳,获得10
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129146
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745595
捐赠科研通 2435160
什么是DOI,文献DOI怎么找? 1293933
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542