Nanoscale engineering of low-misfit TiB2/Al3(Sc,Zr)/α-Al multi-interface to improve strength-ductility synergy for direct energy deposited aluminum alloy

材料科学 陶瓷 合金 微观结构 相间 极限抗拉强度 延展性(地球科学) 格子(音乐) 延伸率 复合材料 材料的强化机理 冶金 蠕动 遗传学 物理 声学 生物
作者
Yang Li,Yihao Wang,Lei Hu,Tingting Chen,Gang Ji,Han Chen,Hongze Wang,Haowei Wang,Zhe Chen
出处
期刊:Additive manufacturing [Elsevier]
卷期号:79: 103913-103913 被引量:1
标识
DOI:10.1016/j.addma.2023.103913
摘要

The nature of the interface between ceramic particle (CP) and metal matrix is critical to obtain solidification microstructures with optimal mechanical properties of CP-reinforced Al alloys in additive manufacturing. Generally, when the lattice misfit between the CP (e.g., TiB2) and the α-Al matrix is higher than 4%, the interfacial coherency reduces, lowering the effectiveness of CPs. Here, we demonstrate that an L12 three-dimensional compound (3DC), which possesses lattice misfit with α-Al lower than 1%, can be introduced in between TiB2 and α-Al via properly regulating the solidification cooling rate. In the 5TiB2/Al-4.5Mg-0.7Sc-0.2Zr (wt%) as a model system, the lattice coherence of the TiB2/α-Al interface is tailored by introducing a 10–30 nm thick Al3(Sc,Zr) 3DC interphase when the cooling rate is increased to ∼1000 °C/s. But, further increasing the cooling rate to ∼6800 °C/s, only Al3(Sc,Zr) two-dimensional compound (2DC) with an apparent lattice strain forms at the interface. Taking advantage of the cooling rate (102-103 oC/s) provided by laser direct energy deposition (L-DED), the low-misfit "TiB2/Al3(Sc,Zr) 3DC/α-Al" multi-structural interfaces are acquired, enabling the 3.56TiB2/Al-4.36Mg-0.72Sc-0.22Zr alloy as fabricated with L-DED to achieved improved strength-ductility synergy (yield strength 257 MPa, elongation 13.8%) due to the isotropically fine Al grain structure and the homogenous TiB2 particle dispersion. The outcome of this study provides fundamental knowledge on designing "ceramic/coherent primary interphase/metal matrix" multi-structural interfaces to improve the mechanical properties of engineering metallic materials manufactured by rapid solidification techniques, such as DED additive manufacturing (AM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助su采纳,获得30
1秒前
good发布了新的文献求助10
1秒前
chenxin7271完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
马蹄应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
研友_LX66qZ完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得30
2秒前
Akim应助火星上的听云采纳,获得10
2秒前
唐博凡应助科研通管家采纳,获得10
2秒前
西柚完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
SciGPT应助洛鸢采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
soso应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
星威应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762