已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization

运动学 运动捕捉 计算机科学 逆动力学 反向动力学 运动(物理) 人工智能 计算机视觉 物理 机器人 经典力学
作者
Keenon Werling,Nicholas A. Bianco,Michael Raitor,Jon P. Stingel,Jennifer L. Hicks,Steven H. Collins,Scott L. Delp,C. Karen Liu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (11): e0295152-e0295152 被引量:11
标识
DOI:10.1371/journal.pone.0295152
摘要

Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subject’s skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2 cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org , which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqzqz完成签到,获得积分20
5秒前
Wfmmm完成签到,获得积分10
7秒前
zqzqz发布了新的文献求助30
9秒前
整挺好完成签到,获得积分10
10秒前
英姑应助ppprotein采纳,获得10
10秒前
alandele发布了新的文献求助20
11秒前
12秒前
万能图书馆应助整挺好采纳,获得10
13秒前
13秒前
苏苏爱学习完成签到 ,获得积分10
18秒前
20秒前
本本完成签到 ,获得积分10
23秒前
尔安完成签到,获得积分10
23秒前
贝贝托完成签到,获得积分10
23秒前
尔安发布了新的文献求助10
26秒前
情怀应助zqzqz采纳,获得10
26秒前
28秒前
spy完成签到 ,获得积分10
30秒前
31秒前
33秒前
34秒前
35秒前
Hhhh完成签到 ,获得积分10
35秒前
小情绪完成签到 ,获得积分10
36秒前
Linson完成签到,获得积分10
36秒前
37秒前
HYQ完成签到 ,获得积分10
37秒前
淡水痕发布了新的文献求助10
38秒前
39秒前
长医德莱文完成签到,获得积分10
41秒前
C9完成签到 ,获得积分10
41秒前
苏楠完成签到 ,获得积分10
42秒前
43秒前
壬湦完成签到,获得积分10
46秒前
骆十八发布了新的文献求助30
48秒前
xuanxuan完成签到 ,获得积分10
50秒前
52秒前
52秒前
53秒前
骆十八完成签到,获得积分10
56秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417401
求助须知:如何正确求助?哪些是违规求助? 3019032
关于积分的说明 8886372
捐赠科研通 2706529
什么是DOI,文献DOI怎么找? 1484347
科研通“疑难数据库(出版商)”最低求助积分说明 685959
邀请新用户注册赠送积分活动 681135