Ultrasound-guided needle tracking with deep learning: A novel approach with photoacoustic ground truth

基本事实 深度学习 人工智能 计算机科学 分割 能见度 可视化 计算机视觉 方向(向量空间) 一致性(知识库) 相似性(几何) 图像(数学) 物理 数学 几何学 光学
作者
Hui Xie,Praveenbalaji Rajendran,Tong Ling,Xianjin Dai,Xing Li,Manojit Pramanik
出处
期刊:Photoacoustics [Elsevier]
卷期号:34: 100575-100575
标识
DOI:10.1016/j.pacs.2023.100575
摘要

Accurate needle guidance is crucial for safe and effective clinical diagnosis and treatment procedures. Conventional ultrasound (US)-guided needle insertion often encounters challenges in consistency and precisely visualizing the needle, necessitating the development of reliable methods to track the needle. As a powerful tool in image processing, deep learning has shown promise for enhancing needle visibility in US images, although its dependence on manual annotation or simulated data as ground truth can lead to potential bias or difficulties in generalizing to real US images. Photoacoustic (PA) imaging has demonstrated its capability for high-contrast needle visualization. In this study, we explore the potential of PA imaging as a reliable ground truth for deep learning network training without the need for expert annotation. Our network (UIU-Net), trained on ex vivo tissue image datasets, has shown remarkable precision in localizing needles within US images. The evaluation of needle segmentation performance extends across previously unseen ex vivo data and in vivo human data (collected from an open-source data repository). Specifically, for human data, the Modified Hausdorff Distance (MHD) value stands at approximately 3.73, and the targeting error value is around 2.03, indicating the strong similarity and small needle orientation deviation between the predicted needle and actual needle location. A key advantage of our method is its applicability beyond US images captured from specific imaging systems, extending to images from other US imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
包容友儿应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
vlots应助科研通管家采纳,获得30
3秒前
Owen应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
动人的白凡完成签到 ,获得积分10
4秒前
galioo3000完成签到,获得积分10
5秒前
6秒前
7秒前
上官若男应助XXXX采纳,获得10
9秒前
10秒前
开什么玩笑完成签到,获得积分10
11秒前
啄春泥发布了新的文献求助10
12秒前
13秒前
zyc发布了新的文献求助30
13秒前
王楠发布了新的文献求助10
15秒前
小白应助starry采纳,获得10
15秒前
17秒前
wq完成签到 ,获得积分10
19秒前
可爱的函函应助zyc采纳,获得10
19秒前
啄春泥完成签到,获得积分10
20秒前
20秒前
体贴的梦露完成签到,获得积分10
21秒前
梅卡完成签到 ,获得积分10
22秒前
XXXX发布了新的文献求助10
23秒前
追梦小帅完成签到,获得积分10
23秒前
周周完成签到 ,获得积分10
24秒前
24秒前
祖母绿袖子完成签到,获得积分10
27秒前
bill完成签到,获得积分10
27秒前
有人应助chai采纳,获得10
28秒前
lml520完成签到,获得积分10
29秒前
壮观的沂发布了新的文献求助10
29秒前
Hshi发布了新的文献求助10
30秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3086063
求助须知:如何正确求助?哪些是违规求助? 2738975
关于积分的说明 7552581
捐赠科研通 2388790
什么是DOI,文献DOI怎么找? 1266693
科研通“疑难数据库(出版商)”最低求助积分说明 613547
版权声明 598591