基本事实
深度学习
人工智能
计算机科学
分割
能见度
可视化
计算机视觉
方向(向量空间)
一致性(知识库)
相似性(几何)
图像(数学)
物理
数学
几何学
光学
作者
Hui Xie,Praveenbalaji Rajendran,Tong Ling,Xianjin Dai,Xing Li,Manojit Pramanik
标识
DOI:10.1016/j.pacs.2023.100575
摘要
Accurate needle guidance is crucial for safe and effective clinical diagnosis and treatment procedures. Conventional ultrasound (US)-guided needle insertion often encounters challenges in consistency and precisely visualizing the needle, necessitating the development of reliable methods to track the needle. As a powerful tool in image processing, deep learning has shown promise for enhancing needle visibility in US images, although its dependence on manual annotation or simulated data as ground truth can lead to potential bias or difficulties in generalizing to real US images. Photoacoustic (PA) imaging has demonstrated its capability for high-contrast needle visualization. In this study, we explore the potential of PA imaging as a reliable ground truth for deep learning network training without the need for expert annotation. Our network (UIU-Net), trained on ex vivo tissue image datasets, has shown remarkable precision in localizing needles within US images. The evaluation of needle segmentation performance extends across previously unseen ex vivo data and in vivo human data (collected from an open-source data repository). Specifically, for human data, the Modified Hausdorff Distance (MHD) value stands at approximately 3.73, and the targeting error value is around 2.03, indicating the strong similarity and small needle orientation deviation between the predicted needle and actual needle location. A key advantage of our method is its applicability beyond US images captured from specific imaging systems, extending to images from other US imaging systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI