Analysis of Risk Factors for Carbapenem Resistant Klebsiella pneumoniae Infection and Construction of Nomogram Model: A Large Case-Control and Cohort Study from Shanxi, China

列线图 医学 逻辑回归 接收机工作特性 Lasso(编程语言) 内科学 急诊医学 重症监护医学 计算机科学 万维网
作者
Hongwei Wang,Fangying Tian,Xueyu Wang,Ming Zhao,Ruizhen Gao,Xinyu Cui
出处
期刊:Infection and Drug Resistance [Dove Medical Press]
卷期号:Volume 16: 7351-7363 被引量:2
标识
DOI:10.2147/idr.s442909
摘要

Healthcare-associated infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are now a global public health problem, increasing the burden of disease and public healthcare expenditures in various countries. The aim of this study was to analyse the risk factors for CRKP infections and to develop nomogram models to help clinicians predict CRKP infections at an early stage to facilitate diagnosis and treatment.The clinical data of patients with Klebsiella pneumoniae (KP) infections in our hospital from January 2018 to January 2023 were collected. 174 patients with CRKP infections and 219 patients with CSKP infections were selected for case-control study. 27 predictors related to CRKP infections were determined. The least absolute shrinkage and selection operator (Lasso) regression was used to screen the characteristic variables, Multivariate logistic regression analysis was performed on the selected variables and a nomogram model was established. The discrimination and calibration of the nomogram model were evaluated by receiver operator curves (ROC) and calibration curves.Six predictive factors of ICU stay, fever time, central venous catheterization time, catheter indwelling time, carbapenem use and tetracycline use screened by lasso regression were included in the logistic regression model, and the nomogram was drawn to visualize the results. The area under ROC curve of training set and validation set was 0.894 (95% CI: 0.857, 0.931) and 0.872 (95% CI: 0.805, 0.939); The results of decision curve analysis also show that the model has good prediction accuracy.This study established a nomogram to predict CRKP infection based on lasso-logistic regression model, which has certain guiding significance for early diagnosis of CRKP infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
rosy给rosy的求助进行了留言
2秒前
3秒前
Catalysis123发布了新的文献求助10
3秒前
roger33发布了新的文献求助10
6秒前
美妞儿~发布了新的文献求助10
6秒前
bkagyin应助optical采纳,获得10
6秒前
7秒前
wongshanshan应助wxyllxx采纳,获得10
7秒前
是小志发布了新的文献求助10
10秒前
10秒前
在水一方应助Catalysis123采纳,获得10
10秒前
cherry bomb完成签到,获得积分10
11秒前
今日不再蛇皇应助鸭子采纳,获得10
12秒前
16秒前
jeonghan完成签到,获得积分20
16秒前
科研通AI2S应助泡沫采纳,获得10
18秒前
四观人完成签到,获得积分10
19秒前
爱做实验的泡利完成签到,获得积分10
19秒前
蓝天白云发布了新的文献求助10
19秒前
20秒前
stop here发布了新的文献求助30
21秒前
研友_VZG7GZ应助依旧采纳,获得30
21秒前
22秒前
22秒前
丰富的笑天完成签到,获得积分10
22秒前
土土不吃土应助wxyllxx采纳,获得10
24秒前
Seong_Ching发布了新的文献求助10
24秒前
27秒前
LXP发布了新的文献求助10
28秒前
28秒前
小蘑菇应助默存采纳,获得10
30秒前
CodeCraft应助汤飞柏采纳,获得10
30秒前
海街日记完成签到,获得积分10
31秒前
31秒前
31秒前
32秒前
科研通AI2S应助叮咚采纳,获得10
32秒前
LXP完成签到,获得积分10
34秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458