Analysis of Risk Factors for Carbapenem Resistant Klebsiella pneumoniae Infection and Construction of Nomogram Model: A Large Case-Control and Cohort Study from Shanxi, China

列线图 医学 逻辑回归 接收机工作特性 Lasso(编程语言) 内科学 急诊医学 重症监护医学 计算机科学 万维网
作者
Hongwei Wang,Fangying Tian,Xueyu Wang,Ming Zhao,Ruizhen Gao,Xinyu Cui
出处
期刊:Infection and Drug Resistance [Dove Medical Press]
卷期号:Volume 16: 7351-7363 被引量:2
标识
DOI:10.2147/idr.s442909
摘要

Healthcare-associated infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are now a global public health problem, increasing the burden of disease and public healthcare expenditures in various countries. The aim of this study was to analyse the risk factors for CRKP infections and to develop nomogram models to help clinicians predict CRKP infections at an early stage to facilitate diagnosis and treatment.The clinical data of patients with Klebsiella pneumoniae (KP) infections in our hospital from January 2018 to January 2023 were collected. 174 patients with CRKP infections and 219 patients with CSKP infections were selected for case-control study. 27 predictors related to CRKP infections were determined. The least absolute shrinkage and selection operator (Lasso) regression was used to screen the characteristic variables, Multivariate logistic regression analysis was performed on the selected variables and a nomogram model was established. The discrimination and calibration of the nomogram model were evaluated by receiver operator curves (ROC) and calibration curves.Six predictive factors of ICU stay, fever time, central venous catheterization time, catheter indwelling time, carbapenem use and tetracycline use screened by lasso regression were included in the logistic regression model, and the nomogram was drawn to visualize the results. The area under ROC curve of training set and validation set was 0.894 (95% CI: 0.857, 0.931) and 0.872 (95% CI: 0.805, 0.939); The results of decision curve analysis also show that the model has good prediction accuracy.This study established a nomogram to predict CRKP infection based on lasso-logistic regression model, which has certain guiding significance for early diagnosis of CRKP infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z119gZ完成签到 ,获得积分10
1秒前
Liuruijia完成签到 ,获得积分10
3秒前
俏皮诺言完成签到,获得积分10
4秒前
飞快的冰淇淋完成签到 ,获得积分10
5秒前
养花低手完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
11秒前
kanong完成签到,获得积分0
15秒前
18秒前
wlscj举报Beeeeeer求助涉嫌违规
18秒前
唐飒发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
26秒前
Shandongdaxiu完成签到 ,获得积分10
31秒前
Hindiii完成签到,获得积分10
32秒前
33秒前
pengyh8完成签到 ,获得积分10
35秒前
唐飒完成签到,获得积分10
36秒前
nan完成签到 ,获得积分10
39秒前
科研通AI6应助潇洒的凝梦采纳,获得10
39秒前
量子星尘发布了新的文献求助10
48秒前
CJY完成签到 ,获得积分10
51秒前
棖0921发布了新的文献求助150
51秒前
JJJ完成签到,获得积分10
54秒前
57秒前
文献完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
CJW完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爱吃无核瓜子完成签到,获得积分10
1分钟前
小贩发布了新的文献求助10
1分钟前
1分钟前
Rosaline完成签到 ,获得积分10
1分钟前
Artist完成签到,获得积分10
1分钟前
1分钟前
Mercy发布了新的文献求助10
1分钟前
曾经的康乃馨完成签到 ,获得积分20
1分钟前
又壮了完成签到 ,获得积分10
1分钟前
1分钟前
LRR完成签到 ,获得积分10
1分钟前
对对对完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432735
求助须知:如何正确求助?哪些是违规求助? 4545270
关于积分的说明 14195354
捐赠科研通 4464743
什么是DOI,文献DOI怎么找? 2447245
邀请新用户注册赠送积分活动 1438542
关于科研通互助平台的介绍 1415547