Analysis of Risk Factors for Carbapenem Resistant Klebsiella pneumoniae Infection and Construction of Nomogram Model: A Large Case-Control and Cohort Study from Shanxi, China

列线图 医学 逻辑回归 接收机工作特性 Lasso(编程语言) 内科学 急诊医学 重症监护医学 计算机科学 万维网
作者
Hongwei Wang,Fangying Tian,Xueyu Wang,Ming Zhao,Ruizhen Gao,Xinyu Cui
出处
期刊:Infection and Drug Resistance [Dove Medical Press]
卷期号:Volume 16: 7351-7363 被引量:2
标识
DOI:10.2147/idr.s442909
摘要

Healthcare-associated infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are now a global public health problem, increasing the burden of disease and public healthcare expenditures in various countries. The aim of this study was to analyse the risk factors for CRKP infections and to develop nomogram models to help clinicians predict CRKP infections at an early stage to facilitate diagnosis and treatment.The clinical data of patients with Klebsiella pneumoniae (KP) infections in our hospital from January 2018 to January 2023 were collected. 174 patients with CRKP infections and 219 patients with CSKP infections were selected for case-control study. 27 predictors related to CRKP infections were determined. The least absolute shrinkage and selection operator (Lasso) regression was used to screen the characteristic variables, Multivariate logistic regression analysis was performed on the selected variables and a nomogram model was established. The discrimination and calibration of the nomogram model were evaluated by receiver operator curves (ROC) and calibration curves.Six predictive factors of ICU stay, fever time, central venous catheterization time, catheter indwelling time, carbapenem use and tetracycline use screened by lasso regression were included in the logistic regression model, and the nomogram was drawn to visualize the results. The area under ROC curve of training set and validation set was 0.894 (95% CI: 0.857, 0.931) and 0.872 (95% CI: 0.805, 0.939); The results of decision curve analysis also show that the model has good prediction accuracy.This study established a nomogram to predict CRKP infection based on lasso-logistic regression model, which has certain guiding significance for early diagnosis of CRKP infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助胖豆采纳,获得10
1秒前
通~发布了新的文献求助10
1秒前
cc发布了新的文献求助10
2秒前
3秒前
MILL发布了新的文献求助10
3秒前
月光入梦完成签到 ,获得积分10
4秒前
HC完成签到,获得积分10
5秒前
琪琪发布了新的文献求助10
5秒前
6秒前
淡定的思松应助风的季节采纳,获得10
7秒前
所所应助mm采纳,获得10
7秒前
8秒前
荒年完成签到,获得积分10
8秒前
魁梧的曼凡完成签到,获得积分10
8秒前
9秒前
研一小刘发布了新的文献求助10
9秒前
陈莹完成签到,获得积分20
9秒前
qi发布了新的文献求助30
10秒前
10秒前
Wyan完成签到,获得积分20
10秒前
我是老大应助通~采纳,获得10
11秒前
Jenny应助淡定紫菱采纳,获得10
11秒前
逆流的鱼完成签到 ,获得积分10
12秒前
12秒前
liuqian完成签到,获得积分10
13秒前
Hou完成签到 ,获得积分10
13秒前
反杀闰土的猹完成签到 ,获得积分20
13秒前
所所应助cc采纳,获得10
14秒前
邵裘完成签到,获得积分10
14秒前
丘比特应助yin采纳,获得10
14秒前
15秒前
15秒前
15秒前
希望天下0贩的0应助sss采纳,获得20
15秒前
拼搏向前发布了新的文献求助10
15秒前
紫罗兰花海完成签到 ,获得积分10
16秒前
琪琪完成签到,获得积分10
17秒前
17秒前
爆米花应助高兴藏花采纳,获得10
17秒前
orixero应助Rrr采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794