DeepPPThermo: A Deep Learning Framework for Predicting Protein Thermostability Combining Protein-Level and Amino Acid-Level Features

热稳定性 人工智能 机器学习 生物勘探 计算机科学 分类器(UML) 深度学习 稳健性(进化) 人工神经网络 蛋白质测序 中层 氨基酸残基 肽序列 生物 基因 生物化学 遗传学 细菌 植物
作者
Xiaoyang Xiang,Jiaxuan Gao,Yanrui Ding
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:31 (2): 147-160
标识
DOI:10.1089/cmb.2023.0097
摘要

Using wet experimental methods to discover new thermophilic proteins or improve protein thermostability is time-consuming and expensive. Machine learning methods have shown powerful performance in the study of protein thermostability in recent years. However, how to make full use of multiview sequence information to predict thermostability effectively is still a challenge. In this study, we proposed a deep learning-based classifier named DeepPPThermo that fuses features of classical sequence features and deep learning representation features for classifying thermophilic and mesophilic proteins. In this model, deep neural network (DNN) and bi-long short-term memory (Bi-LSTM) are used to mine hidden features. Furthermore, local attention and global attention mechanisms give different importance to multiview features. The fused features are fed to a fully connected network classifier to distinguish thermophilic and mesophilic proteins. Our model is comprehensively compared with advanced machine learning algorithms and deep learning algorithms, proving that our model performs better. We further compare the effects of removing different features on the classification results, demonstrating the importance of each feature and the robustness of the model. Our DeepPPThermo model can be further used to explore protein diversity, identify new thermophilic proteins, and guide directed mutations of mesophilic proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助222采纳,获得10
1秒前
2秒前
糊涂的沛山完成签到 ,获得积分10
2秒前
小智完成签到,获得积分10
3秒前
manmankaixin发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI5应助王半书采纳,获得10
5秒前
5秒前
mob5110发布了新的文献求助30
7秒前
8秒前
hyc发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
manmankaixin完成签到,获得积分20
10秒前
ldc发布了新的文献求助10
11秒前
U9A发布了新的文献求助10
12秒前
12秒前
222发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
lxgz发布了新的文献求助10
15秒前
失眠紫青应助asdfasdfj采纳,获得10
16秒前
吃猫的鱼完成签到,获得积分10
16秒前
迈克老狼发布了新的文献求助10
16秒前
冷静晓霜发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
Mr.Ren完成签到,获得积分10
18秒前
18秒前
19秒前
舒服的白云完成签到,获得积分10
19秒前
HoydeA关注了科研通微信公众号
19秒前
胖莹完成签到 ,获得积分10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578