A robust deep learning model for the classification of dental implant brands

牙种植体 植入 人工智能 深度学习 牙科 计算机科学 心理学 口腔正畸科 医学 外科
作者
İkbal LEBLEBİCİOĞLU,Mohammed Lubbad,Ozden Melis Durmaz Yilmaz,Kerem Kılıç,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu,Serkan Yılmaz,Mustafa Ayata,İshak Paçal
出处
期刊:Journal of Stomatology, Oral and Maxillofacial Surgery [Elsevier]
卷期号:: 101818-101818 被引量:3
标识
DOI:10.1016/j.jormas.2024.101818
摘要

In cases where the brands of implants are not known, treatment options can be significantly limited in potential complications arising from implant procedures. This research aims to explore the application of deep learning techniques for the classification of dental implant systems using panoramic radiographs. The primary objective is to assess the superiority of the proposed model in achieving accurate and efficient dental implant classification.A comprehensive analysis was conducted using a diverse set of 25 convolutional neural network (CNN) models, including popular architectures such as VGG16, ResNet-50, EfficientNet, and ConvNeXt. The dataset of 1258 panoramic radiographs from patients who underwent implant treatment at faculty of dentistry was utilized for training and evaluation. Six different dental implant systems were employed as prototypes for the classification task. The precision, recall, F1 score, and support scores for each class have included in the classification accuracy report to ensure accurate and reliable results from the model.The experimental results demonstrate that the proposed model consistently outperformed the other evaluated CNN architectures in terms of accuracy, precision, recall, and F1-score. With an impressive accuracy of 95.74 % and high precision and recall rates, the ConvNeXt model showcased its superiority in accurately classifying dental implant systems. Notably, the model's performance was achieved with a relatively smaller number of parameters, indicating its efficiency and speed during inference.The findings highlight the effectiveness of deep learning techniques, particularly the proposed model, in accurately classifying dental implant systems from panoramic radiographs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyguo发布了新的文献求助10
刚刚
隐形曼青应助Artorias采纳,获得10
刚刚
one发布了新的文献求助10
1秒前
dawnisok完成签到,获得积分10
1秒前
1秒前
2秒前
luogen应助缓慢咖啡采纳,获得10
4秒前
上官若男应助哒哒采纳,获得10
4秒前
4秒前
Ying发布了新的文献求助20
5秒前
LZX关闭了LZX文献求助
5秒前
6秒前
小白发布了新的文献求助10
6秒前
Titi发布了新的文献求助10
7秒前
7秒前
Tony12发布了新的文献求助10
8秒前
情怀应助今夕何夕采纳,获得10
8秒前
kexing发布了新的文献求助10
8秒前
xuhang发布了新的文献求助10
10秒前
鲜于之玉发布了新的文献求助10
10秒前
房产中介应助Artorias采纳,获得10
11秒前
完美梨愁完成签到 ,获得积分10
11秒前
所所应助无敌鱼采纳,获得10
13秒前
丰富的听云完成签到,获得积分10
14秒前
14秒前
攸攸应助ZYC采纳,获得10
15秒前
英姑应助星星泡饭采纳,获得10
15秒前
搜集达人应助封印采纳,获得10
16秒前
16秒前
Akim应助王敏采纳,获得10
17秒前
和谐的玉米完成签到,获得积分10
18秒前
Kyrie完成签到,获得积分10
19秒前
P_Chem完成签到,获得积分10
19秒前
19秒前
David完成签到 ,获得积分10
19秒前
科研通AI2S应助wym采纳,获得10
19秒前
善学以致用应助喜欢哇哇采纳,获得10
19秒前
万能图书馆应助小机灵采纳,获得10
20秒前
20秒前
浮浮发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076845
求助须知:如何正确求助?哪些是违规求助? 2729873
关于积分的说明 7510233
捐赠科研通 2378050
什么是DOI,文献DOI怎么找? 1261026
科研通“疑难数据库(出版商)”最低求助积分说明 611213
版权声明 597203