How do humans give confidence? A comprehensive comparison of process models of perceptual metacognition.

元认知 计算机科学 感知 置信区间 人工智能 机器学习 任务(项目管理) 过程(计算) 统计 心理学 认知 数学 操作系统 经济 神经科学 管理
作者
Medha Shekhar,Dobromir Rahnev
出处
期刊:Journal of Experimental Psychology: General 卷期号:153 (3): 656-688 被引量:2
标识
DOI:10.1037/xge0001524
摘要

Humans have the metacognitive ability to assess the accuracy of their decisions via confidence judgments. Several computational models of confidence have been developed but not enough has been done to compare these models, making it difficult to adjudicate between them. Here, we compare 14 popular models of confidence that make various assumptions, such as confidence being derived from postdecisional evidence, from positive (decision-congruent) evidence, from posterior probability computations, or from a separate decision-making system for metacognitive judgments. We fit all models to three large experiments in which subjects completed a basic perceptual task with confidence ratings. In Experiments 1 and 2, the best-fitting model was the lognormal meta noise (LogN) model, which postulates that confidence is selectively corrupted by signal-dependent noise. However, in Experiment 3, the positive evidence (PE) model provided the best fits. We evaluated a new model combining the two consistently best-performing models-LogN and the weighted evidence and visibility (WEV). The resulting model, which we call logWEV, outperformed its individual counterparts and the PE model across all data sets, offering a better, more generalizable explanation for these data. Parameter and model recovery analyses showed mostly good recoverability but with important exceptions carrying implications for our ability to discriminate between models. Finally, we evaluated each model's ability to explain different patterns in the data, which led to additional insight into their performances. These results comprehensively characterize the relative adequacy of current confidence models to fit data from basic perceptual tasks and highlight the most plausible mechanisms underlying confidence generation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SuperZzz发布了新的文献求助10
2秒前
852应助yixiaolou采纳,获得10
2秒前
星星应助时笙采纳,获得30
2秒前
4秒前
camellia发布了新的文献求助10
4秒前
爱笑若冰发布了新的文献求助10
5秒前
郭富城完成签到,获得积分10
6秒前
hhhblabla应助空古悠浪采纳,获得20
6秒前
射天狼完成签到,获得积分10
6秒前
清爽尔安发布了新的文献求助10
6秒前
8秒前
8秒前
顾矜应助GS11采纳,获得10
9秒前
SuperZzz完成签到,获得积分10
9秒前
李大伟发布了新的文献求助10
11秒前
贾克斯完成签到,获得积分20
11秒前
闾丘剑封发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
李健应助hanleiharry1采纳,获得10
11秒前
12秒前
科研通AI2S应助Hey采纳,获得20
14秒前
爱笑若冰完成签到,获得积分10
14秒前
tomorrow完成签到 ,获得积分10
15秒前
16秒前
Rei完成签到 ,获得积分20
17秒前
科研通AI2S应助无所谓的啦采纳,获得10
17秒前
田様应助打我呀采纳,获得10
17秒前
18秒前
18秒前
科研狗发布了新的文献求助10
18秒前
yixiaolou发布了新的文献求助10
19秒前
李大伟完成签到,获得积分10
20秒前
慎独完成签到,获得积分10
20秒前
MchemG应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得30
21秒前
SYLH应助科研通管家采纳,获得30
21秒前
CHENG_2025应助科研通管家采纳,获得10
21秒前
小萌发布了新的文献求助10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174